0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GaN和SiC晶体管的区别

幽默 来源:幽默 作者:幽默 2022-08-03 09:08 次阅读

几十年来,硅一直主导着晶体管世界,但这种情况正在逐渐发生变化。已经开发出由两种或三种材料制成的化合物半导体,并具有独特的优势和卓越的特性。例如,化合物半导体为我们提供了 LED:一种是由砷化镓 (GaAs) 和砷化镓和磷 (GaAsP) 的混合物组成;其他人使用铟和磷。

虽然化合物半导体更难制造且更昂贵,但与硅相比,它们具有显着的优势。汽车电气系统和电动汽车 (EV) 等新的、要求更高的应用的设计人员发现,化合物半导体更能满足其严格的规范。

作为解决方案出现的两种化合物半导体器件是氮化镓和碳化硅功率晶体管。这些器件与寿命长的硅功率 LDMOS MOSFET 和超级结 MOSFET 竞争。GaN 和 SiC 器件在某些方面相似,但有显着差异。本文将两者进行比较并提供信息以帮助您为下一个设计做出决定。

pYYBAGHEG6qAKsEWAArBZ-n4XNc122.jpg

图 1:流行的高压、大电流晶体管和其他设备以及主要应用的功率能力与开关频率的关系

宽带隙半导体

化合物半导体被称为宽带隙器件。在不诉诸晶格结构、能级和其他令人麻木的半导体物理学的情况下,我们只想说 WBG 的定义试图描述电流电子)如何在化合物半导体中流动。

WBG 化合物半导体具有高电子迁移率和更高的带隙能量,转化为优于硅的特性。由 WBG 化合物半导体制成的晶体管具有更高的击穿电压和更大的高温耐受性。对于高压和高功率应用,这些器件优于硅等效器件。

poYBAGHEG7eADSQHAABKhhld_a0673.png

图 2:双芯片双 FET 共源共栅电路将 GaN 晶体管转换为常态“关断”器件,实现高功率开关电路中标准的增强型操作模式。

WBG 晶体管的开关速度也更快,并且可以在比硅更高的频率下运行。较低的导通电阻意味着它们消耗的功率较少,从而提高效率。这种独特的特性组合使这些器件对汽车应用中使用的一些最苛刻的电路具有吸引力,尤其是混合动力电动汽车 (HEV) 和 EV。

GaN 和 SiC 晶体管正变得越来越容易用于解决汽车电子设备的挑战。GaN 和 SiC 器件的关键要点是以下优势:

具有 650、900 和 1,200 V 器件的高压能力

更快的切换速度

更高的工作温度

更低的传导电阻,最小的功耗和更高的效率

氮化镓晶体管

GaN 晶体管在射频 (RF) 功率领域找到了早期的利基。材料的性质导致了耗尽型(d 型)场效应晶体管(FET)的发展。d 型 FET 被称为假晶高电子迁移率晶体管 (pHEMT),自然是“导通”器件;没有栅极控制输入,存在自然传导通道。栅极输入信号控制通道导通并打开和关闭器件。

由于通常“关闭”的增强模式(e 模式)器件在开关应用中是首选,这导致了 e 模式 GaN 器件的开发。第一个是两个 FET 器件的级联(图 2);现在,可以使用标准的 e-mode GaN 器件。它们可以在高达 10 MHz 和高达数十千瓦的频率下进行切换。

GaN 器件广泛用于无线设备,作为频率高达 100 GHz 的功率放大器。一些主要用例是蜂窝基站功率放大器、军用雷达、卫星发射机和通用射频放大。然而,由于它们的高电压(高达 1,000 V)、耐高温和快速开关,它们也被纳入各种开关模式电源应用,如 DC/DC 转换器逆变器和电池充电器。

碳化硅晶体管

SiC 晶体管是自然的 e-mode MOSFET。这些器件可以在远高于硅 MOSFET 的电压和电流水平下以高达 1 MHz 的频率进行开关。最大漏源电压高达约 1,800 V,电流能力可达 100 A。此外,SiC 器件的导通电阻远低于硅 MOSFET,使其在所有开关电源应用中的效率更高。一个主要缺点是它们需要比其他 MOSFET 更高的栅极驱动电压,尽管随着设计的改进,这种情况正在发生变化。

SiC 器件需要 18 到 20 V 的栅极驱动电压来开启具有低导通电阻的器件。标准 Si MOSFET 需要小于 10 V 的栅极才能完全导通。此外,SiC 器件需要 –3- 至 –5-V 栅极驱动器以切换到“关闭”状态。然而,已经开发了特殊的栅极驱动 IC 来满足这种需求。碳化硅 MOSFET 通常比其他替代品成本更高,但它们的高电压、高电流能力使其非常适合汽车电源电路。

WBG晶体管竞赛

GaN 和 SiC 器件都与其他成熟的半导体竞争,特别是 Si LDMOS MOSFET、超级结 MOSFET 和 IGBT。在许多应用中,这些较旧的器件正逐渐被 GaN 和 SiC 晶体管所取代。

例如,在许多应用中,IGBT 正在被 SiC 器件取代。SiC 器件可以在更高的频率(100 kHz 或更高,相对于 20 kHz)进行开关,从而在提高效率的同时减小任何电感器或变压器的尺寸和成本。SiC 还可以处理比 GaN 更大的电流。

总结 GaN 与 SiC 的比较,以下是亮点:

GaN 的开关速度比 Si 快。

SiC 的工作电压高于 GaN。

SiC 需要高栅极驱动电压。

超级结 MOSFET 正逐渐被 GaN 和 SiC 所取代。SiC 似乎是车载充电器 (OBC) 的最爱。随着工程师发现更新的设备并获得使用经验,这一趋势无疑将继续下去。

汽车应用

许多电源电路和设备可以通过使用 GaN 和 SiC 进行设计来改进。最大的受益者之一是汽车电气系统。现代 HEV 和 EV 包含可以使用这些设备的设备。一些流行的应用是 DC/DC 转换器、OBC、电机驱动器和 LiDAR。图 3指出了电动汽车中需要大功率开关晶体管的主要子系统。

pYYBAGHEG8aAEb8aAAEnzGNLJuQ174.png

图 3:用于 HEV 和 EV 的 WBG 车载充电器。交流输入经过整流、功率因数校正,然后进行 DC/DC 转换(一个输出用于为高压电池充电,另一个用于为低压电池充电)。

DC/DC转换器

这些电源电路将高电池电压转换为较低电压以操作其他电气设备。电池电压现在最高可达 600 或 900 V。DC/DC 转换器将其降至 48 或 12 V 或两者,以便其他电子组件运行(图 3)。在 HEV 和 EV 中,DC/DC 转换器也可用于电池组和逆变器之间的高压总线。

OBCs

插入式 HEV 和 EV 包含一个连接到交流电源的内部电池充电器。这允许在没有外部 AC-DC 充电器的情况下在家充电(图 4)。

牵引电机驱动器

牵引电机是驱动车轮的高输出交流电机。驱动器是一个逆变器,可将电池电压转换为驱动电机的三相交流电。

激光雷达

LiDAR 是指一种结合光和雷达方法来检测和识别周围物体的技术。它使用脉动红外激光扫描 360° 区域并检测反射光。该信息被转换为大约 300 米范围内场景的详细 3D 图片,分辨率为几厘米。其高分辨率使其成为车辆(尤其是自动驾驶)的理想传感器,可提高对附近物体的识别能力。LiDAR 装置使用 DC/DC 转换器提供的 12 至 24 V 范围内的直流电压工作。

pYYBAGHEG9WAFSWjAABvkSzqenQ298.png

图 4:典型的 DC/DC 转换器用于将高电池电压转换为 12 和/或 48 V。高压桥中使用的 IGBT 正逐渐被 SiC MOSFET 取代。

由于其高电压、高电流和快速开关,GaN 和 SiC 晶体管都为汽车电气设计师提供了宽容和更简单的设计以及卓越的性能。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体管
    +关注

    关注

    77

    文章

    9058

    浏览量

    135238
  • SiC
    SiC
    +关注

    关注

    28

    文章

    2443

    浏览量

    61417
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1767

    浏览量

    68030
收藏 人收藏

    评论

    相关推荐

    CGHV96050F1卫星通信氮化镓高电子迁移率晶体管CREE

    CGHV96050F1是款碳化硅(SiC)基材上的氮化镓(GaN)高电子迁移率晶体管(HEMT)。与其它同类产品相比,这些GaN内部搭配CGHV96050F1具有卓越的功率附带效率。与
    发表于 01-19 09:27

    电子晶体管在结构和应用上的区别

    。在数字设备中,肯定会使用大规模集成电路,所以不会采用电子。  通过以上的内容可以看到,电子晶体管在结构与工作方式上都存在着较大的区别,这就导致了两者在应用范围上的不同,显然适应
    发表于 01-26 16:52

    CGHV96100F2晶体管

    是碳化硅(SiC)衬底上的氮化镓(GaN)高电子迁移率晶体管(HEMT)。这种GaN内匹配(IM)场效应晶体管与其他技术相比,提供了优异的功
    发表于 08-13 10:58

    IGN2856S40晶体管现货

    和双极技术。产品型号:IGN2856S40产品名称:晶体管IGN2856S40产品特性SiC HEMT技术中的GaN500瓦输出功率AB类操作预匹配内阻抗100%高功率射频测试负栅电压/偏置序列
    发表于 11-12 11:14

    SiC-MOSFET功率晶体管的结构与特征比较

    ,而且在高温条件下的工作也表现良好,可以说是具有极大优势的开关元件。这张图是各晶体管标准化的导通电阻和耐压图表。从图中可以看出,理论上SiC-DMOS的耐压能力更高,可制作低导通电阻的晶体管。目前
    发表于 11-30 11:35

    直接驱动GaN晶体管的优点

    受益于集成器件保护,直接驱动GaN器件可实现更高的开关电源效率和更佳的系统级可靠性。高电压(600V)氮化镓(GaN)高电子迁移率晶体管(HEMT)的开关特性可实现提高开关模式电源效率和密度的新型
    发表于 10-27 06:43

    什么是GaN透明晶体管

    晶体管通道完全闭合;二维过渡金属二硫化物受损于其比透明导电氧化物还低的载流子迁移率。  在新加坡-麻省理工学院研究与技术联盟,正在先行研发一种有前景的替代材料:GaN。从光学角度看,GaN的带隙为
    发表于 11-27 16:30

    CGHV96100F2氮化镓(GaN)高电子迁移率晶体管

    `Cree的CGHV96100F2是氮化镓(GaN)高电子迁移率晶体管(HEMT)在碳化硅(SiC)基板上。 该GaN内部匹配(IM)FET与其他技术相比,具有出色的功率附加效率。 氮
    发表于 12-03 11:49

    电流旁路对GaN晶体管并联配置的影响

    ,在这种情况下采用基于氮化镓(GaN晶体管的解决方案意义重大。与传统硅器件相类似,GaN晶体管单位裸片面积同样受实际生产工艺限制,单个器件的电流处理能力存在上限。为了增大输出功率,并
    发表于 01-19 16:48

    IGN2856S40是高功率脉冲晶体管

    ,装在基于金属的封装中,并用陶瓷环氧树脂盖密封。GaN on SiC HEMT技术40W输出功率AB类操作预先匹配的内部阻抗经过100%大功率射频测试负栅极电压/偏置排序IGN2731M5功率晶体管
    发表于 04-01 09:57

    IGN0450M250高功率GaN-on-SiC RF功率晶体管

    `IGN0450M250是一款高功率GaN-on-SiC RF功率晶体管,旨在满足P波段雷达系统的独特需求。它在整个420-450 MHz频率范围内运行。 在100毫秒以下,10%占空比脉冲条件
    发表于 04-01 10:35

    用于大功率和频率应用的舍入 GaN晶体管

    和高频场效应晶体管(FET)。WBG 材料以其优异的电学特性,如 GaN 和碳化硅(SiC) ,克服了硅基高频电子器件的局限性。更重要的是,WBG 半导体可用于可扩展的汽车电气系统和电动汽车(电动汽车
    发表于 06-15 11:43

    GaNSiC区别

    半导体的关键特性是能带隙,能带动电子进入导通状态所需的能量。宽带隙(WBG)可以实现更高功率,更高开关速度的晶体管,WBG器件包括氮化镓(GaN)和碳化硅(SiC),以及其他半导体。 GaN
    发表于 08-12 09:42

    氮化镓功率晶体管与Si SJMOS和SiC MOS晶体管对分分析哪个好?

    的改善也同样显著。图 1:100KHz 和 500KHz 时的半桥 LLC 谐振转换器本文讨论了商用GaN功率晶体管与Si SJMOS和SiC MOS晶体管相比在软开关LLC谐振转换器
    发表于 02-27 09:37

    氮化镓晶体管GaN的概述和优势

    和功率密度,这超出了硅MOSFET技术的能力。开发工程师需要能够满足这些要求的新型开关设备。因此,开始了氮化镓晶体管GaN)的概念。  HD-GIT的概述和优势  松下混合漏极栅极注入晶体管(HD-GIT
    发表于 02-27 15:53