0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

磁环选型及应用相关的知识

硬件笔记本 来源:硬件笔记本 作者:硬件笔记本 2022-07-11 10:29 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

大家好,我是蜗牛兄。今天跟大家分享一下磁环选型及应用相关的知识,希望对你有帮助。 本文将从以下四个方面对磁环进行阐述。

f239349a-00c0-11ed-ba43-dac502259ad0.png

一、磁环的应用场景

首先我们来看几张图片

f24e8110-00c0-11ed-ba43-dac502259ad0.png

图1 显示屏VGA线

f25e901e-00c0-11ed-ba43-dac502259ad0.png

图2 适配器连接线

f2710230-00c0-11ed-ba43-dac502259ad0.png

图3USB通信线 这三根线都是我们生活中常见的供电线或通信线,它们都有一个特点,就是连接线上都有很突出的一部分,这突出的部分是什么呢?毫无疑问这就是加的磁环。 磁环是电子产品中常用的抗干扰元件,对于高频噪声有很好的抑制作用。一般使用铁氧体材料(Mn-Zn)制成。 磁环在不同的频率下有不同的阻抗特性,一般在低频时阻抗很小,当信号频率升高时,磁环表现的阻抗急剧升高,在EMC工程设计中,磁环作用显著而被广泛适用。

二、磁环的工作原理

f283412a-00c0-11ed-ba43-dac502259ad0.png

图4 磁环等效电路

如图4,磁环在应用中的等效电路。L为等效电感,R为线缆的等效直流阻抗,C为绕线之间产生的分布电容,这个分布电容要特别注意,它会降低高频滤波性能。

f29c5d2c-00c0-11ed-ba43-dac502259ad0.png

图5 磁环的阻抗曲线

如图5,磁环在未饱和的情况下,信号频率越高,其对应的阻抗越高,当频率超过谐振点时,阻抗会呈现下降趋势。

扣式磁环与铁氧体的最大区别在于它具有很大的损耗,用这种扣式磁环制作的电感,其特性更接近电阻。它是一个电阻值随着频率增加而增加的电阻,当高频信号通过铁氧体磁环时,电磁能量以热的形式耗散掉。

三、磁环的分类

(1)铁氧体磁环

一般锰锌环涂绿色。

铁氧体磁环主要包括镍锌铁氧体磁环和锰锌铁氧体磁环,按磁导率分类:

镍锌铁氧体磁导率在100-1000之间,被称为低导磁环。

锰锌铁氧体磁环材料的磁导率一般在1000以上,被称为高导磁环。

镍锌铁氧体磁环一般用于各种线材,电路板端,电脑设备中抗干扰;

锰锌铁氧体磁环,磁导率很大,这种磁环,通常用来绕制共模电感,抑制电源接口低频共模传导干扰。

一般共模电感抑制频段在500K-30M之间,滤波频段要比铁粉芯差模电感高。

通常情况下,材料磁导率越低,适用的频率范围越宽;材料磁导率越高,适用的频率范围越窄。

(2)铁粉芯磁环

铁粉芯环用两色来区分材质,常用有-2(红/透明)、-8(黄/红)、-18(绿/红)、-26(黄/白)及-52(绿/蓝)

铁粉芯磁环是由碳基铁磁粉及树脂碳基铁磁粉构成,磁导率很低。磁粉和绝缘材料之间有气隙,一般磁导率在20-100之间。正因为铁粉芯磁环磁导率很低,在差模大电流情况下不容易饱和,所以,常使用铁粉芯磁环绕制差模电感。

铁粉芯差模电感,滤波频段很低,几十几百 KHz,抑制电源线传导差模干扰。

铁粉芯主要应用于电器回路中解决电磁兼容性(EMC)问题。实际应用时,根据不同波段下对滤波要求不同会添加各种不同的其它物质。

(3)铁硅铝磁环

铁硅铝一般全黑。

铁硅铝磁环是使用率较高的磁环之一,简单来说,铁硅铝是由铝-硅-铁组成,拥有相当高的Bmax(Bmax是在磁芯截面积上的平均最大磁通密度。),它的磁芯损耗远低于铁粉芯及高磁通,有低磁致伸缩(低噪音),是低成本的储能材料,无热老化,可以用于替代铁粉芯,在高温下性能非常稳定。

铁硅铝最主要的特点是比起铁粉芯损耗低,具有良好的DC偏流特性。价格不是最高,也不是最低,相较于铁粉芯和铁镍钼之间。

铁硅铝磁粉芯具有优异的磁性能,功率损耗小,磁通密度高,在-55C~+125C温度范围内使用时,具有耐温、耐湿、抗振等高可靠性;

同时,60~160的宽磁导率范围可供选择。是开关电源输出扼流圈、PFC电感及谐振电感的最佳选择,具有较高的性价比。

(4)非晶磁环 非晶磁环是个新产品,目前逐渐在普及。

非晶磁环,一般白色和黑色居多。它有一个显著特征:外壳是塑料外壳。所以也很容易判断,因为非晶磁环是绕带的,必须用塑料外壳包裹保护,否则都成碎渣渣了。

相比锰锌铁氧体磁环,非晶磁环磁导率更高,通常10多K甚至几百K,磁导率非常大。

非晶磁环通常用来绕制共模电感,抑制低频传导干扰,相比锰锌铁氧体,非晶磁环虽然贵,但是磁导率大,电感的个头就可以做的比较小,另外,滤波效果也要比锰锌好。

据说可以滤除到几十MHz,已经接近锰锌铁氧体磁环了。所以现在滤波器里面,也在使用非晶磁环做共模电感了!

四、EMC加磁环整改技巧

1、外观选择“尽量长、尽量厚、内径尽量小”的磁环。即磁环越长越好,孔径和所穿过的电缆结合越紧密越好。但在有直流或交流偏置的情况下,还存在铁氧体饱和的问题,抑制元件的横截面积越大,越不易饱和。

2、磁环对电磁波有条件反射的作用,从而减少了信号传送的失真。磁环套用的位置尽量靠近源头的一端(电缆线的进出口),会更加有效的抑制电磁辐射。

3、在抑制高频干扰时,宜选用镍锌铁氧体,抑制低频干扰时用锰锌铁氧体。因为锰锌铁氧体的磁导率在几千至上万,而镍锌铁氧体为几百至上千,磁环铁氧体的磁导率越高,其低频时的阻抗越大,高频时的阻抗越小。

4、怎样避免磁环饱和?当穿过铁氧体的导线中流过较大的电流时,易造成饱和,降低元件的性能。要避免这样情况,可将电源的两根线(正负)同时穿过一个磁环。

f38cceba-00c0-11ed-ba43-dac502259ad0.png

电源的两根线(正负)同时穿过一个磁环

5、低频干扰时,建议线缆绕2—3匝,一方面可提高穿过环的面积,增加等效吸收长度,另一方面充分利用磁环具有磁滞特点,改善低频特性。

高频干扰时,不能绕匝(因为实际磁环上存在寄生电容,这个寄生电容与电感并联,但遇到高频干扰信号时,这个寄生电容将磁环的电感短路失去作用。)这时可选用长一点的磁环。

6、匝数绕制小技巧:理论上匝数越多抑制低频干扰效果越好,但是由于寄生电容增加,抑制高频噪声作用较弱(盲目增加匝数来增加衰减量是一个常见的错误)。

实际应用中,需要根据信号干扰频率来调整匝数。当干扰频率的频带较宽,可在电缆上套两个磁环,每个磁环绕不同的匝数,这样可以同时抑制高频干扰和低频干扰。也可同时套上镍锌和锰锌铁氧体,这样抑制的干扰频段较宽。

7、磁环易碎,因此在安装的过程中需要进行良好的固定,避免运输过程中的碰撞而导致磁环破裂,我们一般用扎带固定。

f3c0f8de-00c0-11ed-ba43-dac502259ad0.png

扎带固定(然后将磁环固定在设备上)

最后,磁环只是EMC整改中常用的元件,用来查找问题所在,在必要时才使用。尽量在设计时加电容电感,从源头将干扰消除。什么都不用加最好。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 等效电路
    +关注

    关注

    6

    文章

    295

    浏览量

    33727
  • 磁环
    +关注

    关注

    3

    文章

    170

    浏览量

    22302
  • 通信线
    +关注

    关注

    0

    文章

    5

    浏览量

    6205

原文标题:干货分享|磁环选型攻略及EMC整改技巧

文章出处:【微信号:gh_a6560e9c41d7,微信公众号:硬件笔记本】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    为什么高端电源都爱用非晶?三大核心优势解读

    在高端电源的设计与制造中,维爱普非晶作为一种关键材料,越来越受到工程师和设计师的青睐。与传统的铁氧体或硅钢芯相比,非晶在性能上展现
    的头像 发表于 11-19 14:08 147次阅读

    基础知识大全

    是一块环状的导磁体,是用于抑制电磁干扰的磁性元件,常用于各种电子设备中。它通常是由铁氧体、钕铁硼等磁性材料制成,具有高磁导率、高饱和通密度、低成本等优点。
    的头像 发表于 10-14 15:34 1291次阅读
    <b class='flag-5'>磁</b><b class='flag-5'>环</b>基础<b class='flag-5'>知识</b>大全

    打印设备T型非晶——高频抗干扰的核心元件

    打印设备T型非晶——高频抗干扰的核心元件|深圳维爱普
    的头像 发表于 09-30 10:26 318次阅读

    致伸缩位移传感器选型实战手册

    致伸缩位移传感器选型需结合场景需求,明确量程、精度、信号输出,注重实用性和稳定性。
    的头像 发表于 09-06 10:56 604次阅读
    <b class='flag-5'>磁</b>致伸缩位移传感器<b class='flag-5'>选型</b>实战手册

    贴片电感珠的选型方法有哪些?

    贴片电感珠的选型需综合考虑电路需求、性能参数、封装尺寸及环境因素等多个方面,以下是具体选型方法及步骤: 一、明确应用场景与电路需求 1、信号类型与频率 : 数字信号 :需关注珠对高
    的头像 发表于 07-31 15:00 808次阅读
    贴片电感<b class='flag-5'>磁</b>珠的<b class='flag-5'>选型</b>方法有哪些?

    【电磁兼容技术案例分享】电感量的理论计算与仿真验证分析

    【电磁兼容技术案例分享】电感量的理论计算与仿真验证分析
    的头像 发表于 07-15 16:25 405次阅读
    【电磁兼容技术案例分享】<b class='flag-5'>磁</b><b class='flag-5'>环</b>电感量的理论计算与仿真验证分析

    多维科技TMR开关传感器选型攻略

    多维科技TMR开关传感器以低功耗(1~2μA)、高频响应(>5000Hz)、可编程开关点和优异的温度特性,受到多家头部厂商青睐。作为工业自动化、消费电子、智能表计等领域的核心元件之一,其选型
    的头像 发表于 06-10 20:03 1333次阅读
    多维科技TMR<b class='flag-5'>磁</b>开关传感器<b class='flag-5'>选型</b>攻略

    电机选型计算公式与知识点汇总

    纯分享帖,需要者可点击附件获取完整资料~~~*附件:电机选型计算公式与知识点汇总.pdf 【免责声明】内容转自今日电机,因转载众多,无法确认真正原始作者,故仅标明转载来源。版权归原出处所有,纯分享帖,侵权请联系删除内容以保证您的权益。
    发表于 04-29 16:10

    探索电机:原理、影响及测量

    在现代工业和日常生活中,电机作为将电能转化为机械能的核心设备,广泛应用于各个领域。而在电机内部,有一个看似不起眼却至关重要的部件—电机。今天,我们就来深入了解一下电机,看看它究
    的头像 发表于 04-24 08:51 935次阅读
    探索电机<b class='flag-5'>磁</b><b class='flag-5'>环</b>:原理、影响及测量

    饱和电流的计算公式

    饱和通密度Bs(饱和磁感应强度):这是磁性材料达到饱和时的最大通密度,通常由材料的特性提供。的几何尺寸:包括
    的头像 发表于 04-03 15:12 1472次阅读
    <b class='flag-5'>磁</b><b class='flag-5'>环</b>饱和电流的计算公式

    揭秘非晶如何助力电子设备实现节能降耗

    在当今快速发展的电子科技时代,节能降耗已成为电子设备设计与制造的重要考量因素。随着对高效能、低功耗设备需求的日益增长,一种名为非晶的磁性材料逐渐崭露头角,以其独特的性能优势在助力电子设备实现
    的头像 发表于 03-31 17:26 887次阅读

    电源EMC测试不过,加or不加,如何选择?

    LISN测得共模噪声大)。 → 优先选择 (尤其是铁氧体材质)。 传导超标 (CE) 差模噪声主导 :火线与零线之间的差模电流超标(如开关电源噪声)。 → 效果有限 ,需配合差
    的头像 发表于 03-27 17:22 3390次阅读

    电容的选型指南:如何根据电路需求选择合适型号?

    电容的选型指南,关键在于根据电路的具体需求来选择合适的型号。以下是根据电路需求选择三电容型号的详细步骤: 一、明确电路需求 首先,需要明确电路对电容的具体需求,包括电容值、耐压值、工作温度范围
    的头像 发表于 03-21 15:08 756次阅读
    三<b class='flag-5'>环</b>电容的<b class='flag-5'>选型</b>指南:如何根据电路需求选择合适型号?

    编码器:精准定位与高效旋转控制的创新解决方案

    在当今高度自动化与智能化的工业领域,每一个微小的运动控制都承载着关键的任务与期望。编码器,作为旋转位置检测领域的明星产品,正以其卓越的性能、高精度的定位能力以及对恶劣环境的适应性,引领着旋转控制
    的头像 发表于 02-28 08:54 911次阅读

    介绍:双孔与三孔

    ,作为一种关键的电子元件,广泛应用于各种电子设备中,对于抑制电磁干扰(EMI)、提高电磁兼容性(EMC)以及确保信号的稳定传输起着至关重要的作用。在众多类型中,双孔
    的头像 发表于 01-14 15:52 1167次阅读