0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC成为实现更高汽车能效的关键技术

星星科技指导员 来源:安森美半导体 作者:Vittorio Crisafulli 2022-05-06 09:27 次阅读

“身为汽车制造商,我们将致力在2035年前在领先市场实现100%零排放的新车和货车销售,辅以与实现这一目标相一致的业务战略,同时帮助构建客户需求。”

COP26宣言是最近联合国气候变化大会英国2021年的成果。安森美(onsemi)最近承诺在2040年前实现净零排放。这不仅仅是个空洞的口号--我们正在实施一项积极的战略来实现这一目标。启用新的汽车功能电子化技术是实现和维持这一承诺的方法之一。

对于电动车(EV),主要的成本在于电池单元/电池组。在过去三年中,EV的锂离子电池价格已下降了40%(在过去十年中几乎下降了90%)。锂离子电池的价格下跌将持续到2025年。

为了进一步加快电气化进程,公用设施到电池以及电池到电机之间的电源转换能效成为可持续发展的关键。新的半导体技术是发展的方向,而碳化硅(SiC)正在成为实现更高的汽车能效的关键技术。

SiC属于所谓的宽禁带(WBG)器件。带隙是固体中的能量范围,在固态物理学中没有电子状态可以存在,这是决定固体导电性的重要因素。带隙大的物质一般是绝缘体;带隙小的物质是半导体,而导体要么有非常小的带隙,要么没有带隙,因为价带和导带是重叠的。这些器件的能带比标准的硅大。

poYBAGJ0eYGAFl66AABt2u_PiRc026.png

表 1. 带隙能量表

当今多数EV使用传统的硅器件技术,如IGBT和硅MOSFET。EV技术方案设计人员已在车载充电器和高压DC-DC应用以及主驱应用中有限地引入了WBG器件(许多方案很快就会投产)。WBG是电力电子的未来。这些新技术结合合适的封装技术,赋能高能效、可靠和成本优化的方案。

这些材料的特性在于其结构。对更高的工作温度、减少能量损失、更高的功率密度、更高的开关频率和更高的阻断电压的要求是主要的驱动力。

SiC相较于Si的优势:

介电击穿场强高 10 倍

能带隙高3 倍

热导率高 3 倍

pYYBAGJ0eYOADtxFAABj2SxMN1c289.png

图 2. 多维材料特性比较

逆变器层面或车辆层面,SiC MOSFET都能实现比IGBT更好的整体系统级成本、性能和质量改进。以下是SiC MOSFET相对于IGBT用于主驱逆变器应用中的关键设计优势:

宽禁带使单位面积的功率密度更高,特别是在更高的电压下移动(如1200伏击穿)。

没有拐点电压,导致在低负载时有更高的能效

单极性的行为,使额定温度更高,开关损耗更低

EV的负载曲线转化为对功率开关的独特要求。从全球统一轻型车辆测试程序(WLPT)到新欧洲驾驶循环(NEDC)的所有驾驶曲线来看,很明显,一辆标准的EV在其整个生命周期中约有5%的时间是全功率运行的。根据驾驶曲线,一辆EV在其余的时间里平均运行全部负载的30%至40%,对SiC MOSFET的需求比IGBT更强。SiC MOSFET没有拐点电压,能效明显比IGBT高,在车辆层面上可节省电池组。

poYBAGJ0eYaAd7g5AAFhthyAPak401.png

表 2:驾驶曲线示例

B2 SiC(NVVR26A120M1WST)功率模块是用于混合动力车(HEV)和电动车(EV)主驱逆变器应用的VE-TracTM系列功率模块的一部分--该模块平台在一个半桥架构中集成了安森美的所有SiC MOSFET技术。裸片连接采用烧结技术,提高了能效、功率密度和可靠性。该模块符合AQG 324汽车功率模块标准。B2 SiC模块结合烧结技术用于裸片连接和铜夹,压铸模工艺用于实现强固的封装。其SiC芯片组采用安森美的M1 SiC技术,从而提供高电流密度、强大的短路保护、高阻断电压和高工作温度,在EV主驱应用中带来领先同类的性能。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    447

    文章

    47788

    浏览量

    409110
  • MOSFET
    +关注

    关注

    141

    文章

    6569

    浏览量

    210130
  • 安森美
    +关注

    关注

    31

    文章

    1509

    浏览量

    91471
收藏 人收藏

    评论

    相关推荐

    光伏逆变器拓扑概述及关键技术

    光伏逆变器拓扑概述及关键技术
    的头像 发表于 02-21 09:47 266次阅读
    光伏逆变器拓扑概述及<b class='flag-5'>关键技术</b>

    物联网关键技术和应用

    电子发烧友网站提供《物联网关键技术和应用.pdf》资料免费下载
    发表于 11-28 10:37 0次下载
    物联网<b class='flag-5'>关键技术</b>和应用

    SMT焊盘设计中的关键技术

    在电子组装领域,表面贴装技术(Surface Mount Technology,SMT)已成为一种主流的组装方式。SMT的核心在于焊盘设计,它直接影响着焊接质量和产品可靠性。本文将探讨SMT焊盘设计中的关键技术,包括焊盘的尺寸设
    的头像 发表于 11-14 11:22 277次阅读
    SMT焊盘设计中的<b class='flag-5'>关键技术</b>

    实现IPTV成功部署的关键技术分析

    电子发烧友网站提供《实现IPTV成功部署的关键技术分析.doc》资料免费下载
    发表于 11-10 14:42 0次下载
    <b class='flag-5'>实现</b>IPTV成功部署的<b class='flag-5'>关键技术</b>分析

    W波段雷达导引头的基本实现方案、关键技术解决途径

    电子发烧友网站提供《W波段雷达导引头的基本实现方案、关键技术解决途径.pdf》资料免费下载
    发表于 10-23 09:14 1次下载
    W波段雷达导引头的基本<b class='flag-5'>实现</b>方案、<b class='flag-5'>关键技术</b>解决途径

    汽车区域控制器的关键技术和MCU解决方案深度分析

    汽车区域控制器的关键技术和MCU解决方案深度分析
    的头像 发表于 10-18 17:40 1207次阅读
    <b class='flag-5'>汽车</b>区域控制器的<b class='flag-5'>关键技术</b>和MCU解决方案深度分析

    视觉导航关键技术及应用

    由于视觉导航技术的应用越来越普及 ,因此 ,有必要对视觉导航中的关键技术及应用进行研究。文章对其中的图像处理技术和定位与跟踪技术进行了详细研究 ,并与此相对应 ,介绍的相关的应用。
    发表于 09-25 08:09

    面向OpenHarmony终端的密码安全关键技术

    终端-云端协同,实现当前国产体系密码技术合规应用、首创并优化非交互联邦学习、解决云-端整体安全技术难题,具备创新性、可行性。 欢迎大家加入到密码安全关键技术的研究当中,共同参与Open
    发表于 09-13 19:20

    轮毂电机及电动轮关键技术是什么

    轮毂电机的研发、产业化和整车应用为全球技术竞争的焦点和研究热点。十三五和十四五期间,国家“新能源汽车”试点专项持续推动轮毂电机相关课题的研究,如2017年分布式纯电动轿车底盘开发(重大共性关键技术
    发表于 08-17 10:01 434次阅读
    轮毂电机及电动轮<b class='flag-5'>关键技术</b>是什么

    汽车电路线束设计关键技术介绍

    ----线束设计关键技术---- 1.概述 线束是汽车电路中连接各电器设备的接线部件, 由绝缘护套、 接线端子、 导线及绝缘包扎材料等组成, 汽车线束是汽车电路的网络载体, 是整车电器
    的头像 发表于 07-14 10:59 748次阅读
    <b class='flag-5'>汽车</b>电路线束设计<b class='flag-5'>关键技术</b>介绍

    新能源电驱动系统的关键技术与发展~我们共同聚焦

    通过对北汽新能源电驱动总成发展历程的回顾,北京新能源汽车股份有限公司电驱系统总师梁亚非先生将对目前大家非常关注的800V高压架构的相关内容进行详细介绍,包括SiC电驱动总成的关键技术、高压Si
    的头像 发表于 07-12 14:15 1370次阅读

    科友半导体突破8英寸SiC量产关键技术

    科友半导体突破了8英寸SiC量产关键技术,在晶体尺寸、厚度、缺陷控制、生长速率、制备成本、及装备稳定性等方面取得可喜成绩。2023年4月,科友半导体8英寸SiC中试线正式贯通并进入中试线生产,打破了国际在宽禁带半导体
    发表于 06-25 14:47 353次阅读

    SiC mosfet选择栅极驱动IC时的关键参数

    Navitas的GeneSiC碳化硅(SiC) mosfet可为各种器件提供高效率的功率传输应用领域,如电动汽车快速充电、数据中心电源、可再生能源、能源等存储系统、工业和电网基础设施。具有更高的效率
    发表于 06-16 06:04

    SiC器件如何推动EV市场发展

    这些挑战。与硅相比,SiC器件具有更低的导通电阻和更快的开关速度,并且能够在更高的结温下耐受更大的电压和电流。这些特性结合其更小的尺寸以及更高的效率,提高了功率密度,这使SiC
    的头像 发表于 05-11 20:16 252次阅读

    5G技术的特点和关键技术

    5G技术关键技术包括以下几个方面:   大规模多输入多输出(MIMO)技术:5G采用的MIMO技术将天线数量增加到数十个乃至数百个,使用更高
    发表于 05-06 16:16 3054次阅读