0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

超分辨高精度显微镜3D成像模块的应用说明

昊量光电 来源:昊量光电 作者:昊量光电 2022-04-24 16:51 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

光学显微镜凭借其非接触、无损伤等优点,成为生物学家研究细胞功能结构、蛋白网络结构、DNA等遗传物质、细胞器以及膜结构等应用必不可少的工具,然而衍射极限的存在,使得人们无法清晰地观察到横向尺寸小于200nm、轴向尺寸小于500nm的细胞结构。二十一世纪初期,具有纳米尺度分辨率的超分辨光学显微成像技术的出现,使得研究人员可以在更高的分辨率水平进行生物研究。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得;对透镜制造技术提出了一定要求的同时,也限制了观测的视野;日益复杂的设备使得操作和维护也越来越困难等。

为解决上述问题,美国Double Helix Optics公司提出了纳米级分辨率成像的新概念-“SPINDLE”,不仅突破了衍射极限,还可以实现三维成像,可捕捉到小至横向尺寸10 nm、轴向尺寸15 nm的细节。在该技术中,SPINDLE模块被安装在显微镜和ccd或相机之间,无需改变现有成像系统设置。基于特殊设计的相位掩模版,从工程化点扩散函数 (E-PSF)出发,使用螺旋相位掩模板来控制景深、发射波长和精度,结合3DTRAX软件对3D图像进行重建和分析,可在不需要扫描的条件下即时捕获 3D 信息,得到无与伦比的深度和精度3D图像,横向精度可达20nm, 轴向精度可达25nm,成像深度可达20um。当与其他工具和技术,包括STORM、PALM、SOFI、光片显微、宽场、宽场显微、TIRF、FRET等一起使用时,可释放巨大的潜力,适用于活细胞、固定细胞和全细胞成像、单分子、粒子跟踪和粒子计数等应用。

poYBAGJlDUKAGDVlAAIn0QB7sII001.png

图1:SPINDLE2双通道显微镜模块,用于同时多色、多深度3D成像

SPINDLE2可以被很容易地安装到现有显微镜和CCD或相机之间,内置旁路模式可轻松返回到非3D光路,是实现单发超分辨和3D宽场成像的理想解决方案。

poYBAGJlDZuACjYyAAP8iljgnPE655.png

图2:非洲绿猴肾细胞的3D 图像,微管和肌动蛋白分别标记,两种颜色同时成像

在SPINDLE模块中,最核心的是经过特殊设计的相位掩模板,其尺寸和设计需和光学系统和成像条件相匹配。这些相位掩模板将单一物体发出的光分裂成两个独立的旋转的光瓣,类似于双螺旋。两瓣的中点对应物体发光源的横向位置,两瓣的夹角对应发光源的轴向位置。由于旋转180°时光斑可以保持聚焦,因此可以高精度地获取发光“点”的深度信息。收集的数据由许多这些在不同方向上与物体横向和轴向位置相对应的分离良好的点组成。经过对这些详细的目标点数据集处理和图像重建创建,即可得到超高分辨率原始物体清晰的三维结构。

pYYBAGJlDiqAadUrAAFFLv8PR3s189.png

图3:工程化相位掩模板通过每帧成像更大的体积来节省时间和存储空间,并降低感光度

丰富多样的相位掩模板库,包括双螺旋,单螺旋,EDOF,四足,和多色设计以提供最大的控制和灵活性。用户可依据深度范围、波长和其他光学参数选择合适的相位掩模版以满足最佳的深度-精度平衡。

3DTRAX® 软件用于计算每个粒子的z位置,运行专有算法以自动进行3D定位,以‹20 nm的深度和分辨率渲染高精度3D图像,用于单分子定位和跟踪。对漂移进行自动校正并生成直观的绘图,同时保持高数据质量。

poYBAGJlDmiAVztjAAJAirmueiA067.png

图4:3DTRAX®是非常易于使用的斐济插件

使用适用于 Windows、MacOS 和 Linux 的库集成到您的工作流程或 OEM 仪器中,以 ThunderSTORM 或双螺旋文件格式保存图像并导出文件以供进一步分析,专有的反卷积算法可以在不损失精度的情况下重建全细胞图像。

pYYBAGJlDpeAX668AA_WDh-7__Q564.png

图5:从左到右:非洲绿猴肾细胞的细胞骨架,小鼠胚胎成纤维细胞中的微管,小鼠胚胎成纤维细胞细胞核中的复制DNA的3D超分辨图像

超分辨显微镜3D成像模块应用

超分辨显微成像和3D粒子跟踪技术为生物学和生物医学研究、药物发现、材料科学研究和工业检测打开了一个充满可能性的新世界。双螺旋工程技术具有高达传统显微镜30倍的成像深度,其为超分辨成像带来了最好的精度-深度平衡。在3D粒子追踪应用中,双螺旋工程带来的扩展的深度可以实现更长粒子轨迹的捕获。

在生命科学领域,双螺旋光工程正在引领从癌症和免疫学到传染病和神经科学的生命科学的突破。研究人员通过使用SPINDLE模块发现了新的细胞结构和亚细胞的相互作用。研究神经退行性疾病的科学家们能够看到以前从未见过的压力颗粒核3D图像。同样,研究免疫学的研究人员已经能够重建整个T细胞。

在药物开发领域,研究人员已经可以看到和跟踪药物化合物的真正工作原理,而不是简单地模拟新的化合物。双螺旋光工程实现了在成像和单粒子跟踪(SPT)领域的新突破,随着追踪分子的能力跨越更大的景深(高达20um),双螺旋可以记录比以往任何时候更长的轨迹,使得识别先导化合物和加快药物发现变得更加容易。

在材料科学领域,借助3D纳米成像和粒子跟踪技术,无论是金属、半导体、陶瓷、聚合物还是纳米材料研究,双螺旋技术都可以让您看到材料的结构、流动性等性能。精密成像与深度扩展相结合,让你对粒子动力学有了新的认识。有了更多的数据,就可以更好地预测材料在任何给定应用领域中的性能。

在工业检测领域,双螺旋工程可实现纳米尺度的三维检查。现在你可以在从微芯片到像素级的产品中发现微小的缺陷和其他功能缺陷。纳米级精度的检测,可以提高质量控制,节省时间,降低成本,提高产量和跟踪质量。

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 显微镜
    +关注

    关注

    0

    文章

    715

    浏览量

    25138
  • 3D成像
    +关注

    关注

    0

    文章

    100

    浏览量

    16704
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    景深显微镜在材料学中的应用

    景深显微镜显微成像领域的关键技术突破,通过特殊光学设计与先进图像处理算法,实现大景深成像,单一视场即可获取整体清晰的样本图像,大幅提升
    的头像 发表于 11-11 18:03 1106次阅读
    <b class='flag-5'>超</b>景深<b class='flag-5'>显微镜</b>在材料学中的应用

    共聚焦显微镜(LSCM)的针孔效应

    ,构建照明与探测光路的共轭关系,从而获取高分辨率三维结构信息。该优势在光子湾科技共聚焦显微镜的三维成像高精度检测解决方案中,得到充分体现与验证,在材料科学、半导体等
    的头像 发表于 10-21 18:03 312次阅读
    共聚焦<b class='flag-5'>显微镜</b>(LSCM)的针孔效应

    共聚焦显微镜和电子显微镜有什么区别?

    在现代科研与高端制作领域,微观探索依赖高分辨成像技术,共聚焦显微镜与电子显微镜是其中的核心代表。在微观检测中,二者均突破传统光学显微镜局限
    的头像 发表于 09-18 18:07 603次阅读
    共聚焦<b class='flag-5'>显微镜</b>和电子<b class='flag-5'>显微镜</b>有什么区别?

    高精度压电纳米位移台:AFM显微镜的精密导航系统

    高精度压电纳米位移台:AFM显微镜的精密导航系统为生物纳米研究提供终极定位解决方案在原子力显微镜(AFM)研究中,您是否常被这些问题困扰?→样品定位耗时过长,错过关键动态过程?→扫描图像漂移失真
    的头像 发表于 08-13 11:08 795次阅读
    <b class='flag-5'>高精度</b>压电纳米位移台:AFM<b class='flag-5'>显微镜</b>的精密导航系统

    景深显微镜技术:拓展微观形貌表征分析新维度

    微观结构的精确测量是实现材料性能优化和器件功能提升的核心,景深显微镜技术以其在测量中的高精度和高景深特性,为材料科学界提供了一种新的分析工具,用以精确解析微观世界的复杂结构。美能光子湾将带您了解
    的头像 发表于 08-05 17:54 1162次阅读
    <b class='flag-5'>超</b>景深<b class='flag-5'>显微镜</b>技术:拓展微观形貌表征分析新维度

    共聚焦显微镜技术及系统组成介绍

    随着科技的飞速发展,精密测量领域对于高分辨率和高精度的需求日益增长。在这一背景下,共聚焦显微镜技术以其独特的优势脱颖而出,成为3D表面测量的前沿技术。美能光子湾
    的头像 发表于 08-05 17:53 1167次阅读
    共聚焦<b class='flag-5'>显微镜</b>技术及系统组成介绍

    3D 共聚焦显微镜 | 芯片制造光刻工艺的表征应用

    光刻工艺是芯片制造的关键步骤,其精度直接决定集成电路的性能与良率。随着制程迈向3nm及以下,光刻胶图案三维结构和层间对准精度的控制要求达纳米级,传统检测手段难满足需求。光子湾3D共聚焦
    的头像 发表于 08-05 17:46 788次阅读
    <b class='flag-5'>3D</b> 共聚焦<b class='flag-5'>显微镜</b> | 芯片制造光刻工艺的表征应用

    VirtualLab Fusion应用:具有高数值孔径的反射显微镜系统

    摘要 在单分子显微成像应用中,定位精度是一个关键问题。由于某一方向上的定位精度与该方向上图像的点扩散函数(PSF)的宽度成正比,因此具有更高数值孔径(NA)的
    发表于 06-05 08:49

    VirtualLab Fusion应用:用于高NA显微镜成像的工程化PSF

    。 用于3D成像显微镜的双螺旋PSF 在VirtualLab Fusion中,通过在高NA显微镜系统的光瞳平面中插入相位掩模,以简单快捷的方式分析双螺旋PSF。 结果表明,即使只有一
    发表于 03-26 08:47

    景深3D检测显微镜技术解析

    方案的制定提供依据。 在工业检测领域,景深3D检测显微镜高精度成像能力使其成为质量控制的利器。无论是电子元器件的检测,还是精密机械零件的
    发表于 02-25 10:51

    VirtualLab Fusion案例:单分子显微镜高NA成像系统的建模

    成像的复杂高NA显微镜系统,包括所有物理光学效应(在这种情况下,最相关的是衍射引起的那些效应)。我们选择了一个NA=0.99的紧凑型反射显微镜和另一个基于傅里叶显微镜作为例子来
    发表于 01-16 09:52

    VirtualLab Fusion案例:高NA反射显微镜系统

    摘要 在单分子显微镜成像应用中,定位精度是一个关键问题。由于在某一方向上的定位精度与图像在同一方向上的点扩散函数(point spread function, PSF)的宽度成正比,因
    发表于 01-16 09:50

    VirtualLab Fusion应用:具有高数值孔径的反射显微镜系统

    摘要 在单分子显微成像应用中,定位精度是一个关键问题。由于某一方向上的定位精度与该方向上图像的点扩散函数(PSF)的宽度成正比,因此具有更高数值孔径(NA)的
    发表于 01-02 16:45

    压电纳米运动技术在“超级显微镜”中的应用

    压电纳米运动技术可以在纳米尺度下实现高精度的运动控制。在光学显微镜应用中,压电纳米运动器件可以进行样品控制、扫描、光束对准和自动聚焦等操作,大幅提高显微镜分辨率和
    的头像 发表于 01-02 10:06 801次阅读
    压电纳米运动技术在“超级<b class='flag-5'>显微镜</b>”中的应用

    季丰电子3D景深数字显微镜简介

    日前,季丰电子与上海交通大学合作开发的3D景深数字显微镜HY01正式通过了专家组验收。
    的头像 发表于 12-30 10:40 1258次阅读