0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

将加速基因组分析扩展到RNA 、基因面板和注释

星星科技指导员 来源:NVIDIA 作者:NVIDIA 2022-04-10 17:19 次阅读

NVIDIA Clara Parabricks v3 的发布。 6 去年夏天,在 全基因组和全外显子组测序分析综合工具包 中添加了多个加速体细胞变异调用者和用于注释和质量控制 VCF 文件的新工具。

在 2022 年 1 月发布的 Clara Parabricks v3 中。 7.NVIDIA 将工具包的范围扩展到新的数据类型,同时继续改进现有工具:

增加了对 RNASeq 分析的支持

通过加速实施 Fulcrum Genomics 的fgbio管道,增加了对基于 UMI 的基因面板分析的支持

增加了对mutect2正常面板( PON )过滤的支持,使加速mutectcaller符合 GATK 调用肿瘤正常样本的最佳实践

合并了一个bam2fq方法,该方法可以加速读取到新引用的重新对齐

使用ExpansionHunter增加了对短串联重复分析的支持

将呼叫后 VCF 分析步骤加快 15 倍

更新了HaplotypeCaller以匹配 GATK v4.1 ,并将DeepVariant更新为 v1.1

Clara Parabricks v3.7 显著拓宽了 Clara Parabricks 的功能范围,同时继续投资于领先的全基因组和全外显子组管道领域。

使参考基因组与 bam2fq 和 fq2bam 重新对齐

为了解决人类参考基因组的最新更新问题,并使重新排列读数便于大型研究, NVIDIA 开发了一种新的bam2fq工具。 Parabricks bam2fq可以从 BAM 文件中提取 FASTQ 格式的读取数据,为 GATK SamToFastq或bazam等工具提供了一个加速的替代品。

与 Parabricks fq2bam相结合,您可以使用八个 NVIDIA V100 GPU 在 90 分钟内将一个 30 倍 BAM 文件从一个引用(例如 hg19 )完全重新对齐到一个更新的引用( hg38 或 CHM13 )。内部基准测试表明,与仅依赖 hg19 相比,重新调整到 hg38 并重新运行变体调用可以在一瓶 HG002 真值集中捕获基因组中数千个真正的阳性变体。

重新调整后的变体调用的改进几乎与最初与 hg38 一致。虽然这个工作流程以前是可行的,但它的速度非常慢。 NVIDIA 最终将参考基因组更新应用于 Clara Parabricks 中最大的 WGS 研究。

#############
## Download the 30X hg19-aligned bam from Google's public sequencing of HG002
## and the respective BAI file.
#############
wget https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch37/bam/hiseqx/wgs_pcr_free/30x/HG002.hiseqx.pcr-free.30x.dedup.grch37.bam
wget https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch37/bam/hiseqx/wgs_pcr_free/30x/HG002.hiseqx.pcr-free.30x.dedup.grch37.bam.bai
#############
## Prepare the references so we can realign reads
#############
## Download the original hg19 / hsd37d5 reference
## and create and FAI index
wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
gunzip hs37d5.fa.gz
samtools faidx hs37d5.fa
## Download GRCh38
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
gunzip GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
## Make a .fai index using samtools faidx
samtools faidx GCA_000001405.15_GRCh38_no_alt_analysis_set.fna
## Create the BWA indices
bwa index GCA_000001405.15_GRCh38_no_alt_analysis_set.fna
## Download the Gold Standard indels from 1kg to use as your known-sites file.
wget https://storage.googleapis.com/genomics-public-data/resources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz
## Also grab the tabix index for the file
wget https://storage.googleapis.com/genomics-public-data/resources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.tbi
############
## Run the bam2fq tool to extract reads from the BAM file
## Adjust the --num-threads argument to reflect the number of cores on your system.
## With 8 GPUs and 64 vCPUs this should take ~45 minutes.
############
time pbrun bam2fq \
--ref hs37d5.fa \
--in-bam HG002.hiseqx.pcr-free.30x.dedup.grch37.bam \
--out-prefix HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq \
--num-threads 64
##############
## Run the fq2bam tool to align reads to GRCh38
##############
time pbrun fq2bam \
--in-fq HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq_1.fastq.gz HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq_1.fastq.gz \
--ref Homo_sapiens_assembly38.fasta \
--knownSites Mills_and_1000G_gold_standard.indels.hg38.vcf.gz \
--out-bam HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.bam \
--out-recal-file HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.BQSR-REPORT.txt

RNASeq 转录本定量和融合调用 Clara Parabricks 的更多选项

在 3.7 版中, Clara Parabricks 还添加了两个用于 RNASeq 分析的新工具。

转录本定量是对 RNASeq 数据进行的最有效的分析之一。 Kallisto 是一种基于伪比对的快速表达量化方法。虽然 Clara Parabricks 已经将 STAR 纳入了 RNASeq 比对,但 Kallisto 添加了一种补充方法,可以运行得更快。

融合调用是另一种常见的 RNASeq 分析。在 Clara Parabricks 3.7 中, Arriba 提供了第二种方法,用于根据星形对齐器的输出调用基因融合。与恒星聚变相比,阿里巴可以调用更多类型的事件,包括:

病毒整合位点

内部串联复制

全外显子重复

环状 RNA

涉及免疫球蛋白和 T 细胞受体位点的增强子劫持事件

内含子和基因间区域中的断点

Kallisto 和 Arriba 的加入使 Clara Parabricks 成为许多转录组分析的综合工具包。

简化和加速基因面板和 UMI 分析

虽然全基因组和全外显子组测序在研究和临床实践中越来越普遍,但基因面板在临床领域占据主导地位。

基因小组工作流程通常使用独特的分子标识符( UMI )连接到读取,以提高低频突变的检测极限。NVIDIA 加速了 Fulcrum Genomics fgbio UMI 管道,并将八步管道整合到 v3 中的单个命令中。 7 ,支持多种 UMI 格式。



图 1 。 Fulcrum Genomics Fgbio-UMI 管道通过对 Clara Parabricks 的一个命令加速

使用 ExpansionHunter 检测短串联重复序列中的变化

短串联重复序列( STR )是某些神经系统疾病的公认原因,也是法医学和群体遗传学研究中指纹样本的重要标记。

NVIDIA 通过在 3.7 版中添加对ExpansionHunter的支持,在 Clara Parabricks 中实现了这些位点的基因分型。现在完全使用 Clara Parabricks 命令行界面就可以轻松地从原始读取转换为基因型 STR 。

利用 PON 支持改善静音体细胞突变通话

根据已知正常样本中的一组突变筛选体细胞突变调用是一种常见做法,也称为正常组( PON )。 NVIDIA 在mutectcaller工具中增加了对公共 PON 集和自定义 PON 的支持,该工具现在为体细胞突变呼叫提供了 GATK 最佳实践的加速版本。

加速呼叫后 VCF 注释和质量控制

在 v3 中。在第 6 版中, NVIDIA 添加了vbvm、vcfanno、frequencyfiltration、vcfqc和vcfqcbybam工具,使呼叫后 VCF 合并、注释、过滤、过滤和质量控制更易于使用。

v3 。 7 版本通过完全重写vbvm、vcfqc和vcfqcbybam的后端对这些工具进行了改进,所有这些工具现在都更加健壮,速度提高了 15 倍。

#!/bin/bash
########################
## In this gist, we'll reuse the commands from our 3.6 tutorial to align reads and generate BAM files.
## Check out the full post at https://medium.com/@johnnyisraeli/accelerating-germline-and-somatic-genomic-analysis-of-whole-genomes-and-exomes-with-nvidia-clara-e3deeae2acc9
and Gists at:
## https://gist.github.com/edawson/e84b2785db75d3c0aea9cc6a59969d45#file-full_pipeline_and_data_prep_parabricks3-6-sh
## and
## https://gist.github.com/edawson/e84b2785db75d3c0aea9cc6a59969d45#file-step_1_align_reads_parabricks3-6-sh
###########
###########
## We'll run this tutorial on a GCP VM with 64 vCPUs, 240GB of RAM, and 8x NVIDIA V100 GPUs
## To save costs, you can also run this on a GCP VM with 32 vCPUS, 120GB of RAM, and 4x V100 GPUs
###########
## After aligning our reads, we'll rerun the variant calling stages of our past gist
## since we've updated the haplotypecaller and DeepVariant tools. We'll
## also run Strelka2 as an additional variant caller.
##
## After that, we'll merge our VCFs to generate a union callset and an intersection VCF
## with variants called by all three variant callers, annotate our new intersection VCF,
## and remove variants that fail certain criteria for population frequency.
## Finally, we'll run our vcfqc and vcfqcbybam tools to generate simple quality control reports.
#############
################
## HaplotypeCaller
## This step should take roughly 15 minutes on our 8xV100 VM.
################
time pbrun haplotypecaller \
--ref ~/refs/Homo_sapiens_assembly38.fasta \
--in-bam HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.bam \
--in-recal-file HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.BQSR-REPORT.txt \
--out-variants HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.haplotypecaller.vcf
################
## DeepVariant
## This step should take approximately 20 minutes on an 8xV100 VM
################
time pbrun deepvariant \
--ref Homo_sapiens_assembly38.fasta \
--in-bam HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.bam \
--out-variants HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.deepvariant.vcf
###############
## Strelka
## This step should take ~10 minutes on a 64-core VM.
###############
time pbrun strelka \
--ref Homo_sapiens_assembly38.fasta \
--in-bams HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.bam \
--out-prefix HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.strelka \
--num-threads 64
## Copy strelka results to current directory.
cp HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.strelka.strelka_work/results/variants/variants.vcf.gz* .
## BGZIP and tabix-index the deepvariant VCFs
bgzip -@16 HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.deepvariant.vcf
tabix HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.deepvariant.vcf.gz
## BGZIP and tabix index the haplotypecaller VCFs
bgzip -@16 HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.haplotypecaller.vcf
tabix HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.haplotypecaller.vcf.gz
## Run the votebasedvcfmerger tool to generate a union and intersection VCF.
time pbrun votebasedvcfmerger \
--in-vcf strelka:variants.vcf.gz \
--in-vcf deepvariant:HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.deepvariant.vcf.gz \
--in-vcf haplotypecaller:HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.pb.haplotypecaller.vcf.gz \
--min-votes 3
--out-dir HG002.realign.vbvm
## The HG002.realign.vbvm directory should now contain a
## unionVCF.vcf file with the union callset of HaplotypeCaller, Strelka, and DeepVariant
## and aa filteredVCF.vcf file with only calls produced by all three callers.
## Annotate the intersection VCF with gnomAD, ClinVar, 1000 Genomes
## Download our annotation VCFs and tabix indices
wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz.tbi
wget https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1.1/liftover_grch38/vcf/exomes/gnomad.exomes.r2.1.1.sites.liftover_grch38.vcf.bgz
wget https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1.1/liftover_grch38/vcf/exomes/gnomad.exomes.r2.1.1.sites.liftover_grch38.vcf.bgz.tbi
wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20181203_biallelic_SNV/ALL.wgs.shapeit2_integrated_v1a.GRCh38.20181129.sites.vcf.gz
wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20181203_biallelic_SNV/ALL.wgs.shapeit2_integrated_v1a.GRCh38.20181129.sites.vcf.gz.tbi
## Download an Ensembl GTF to annotate the VCF file with gene names
wget http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.GRCh38.105.gtf.gz
## Unzip the GTF file and add the "chr" prefix to the chromosome names (Ensembl excludes this prefix by default.
gunzip Homo_sapiens.GRCh38.105.gtf.gz
awk '{if($0 !~ /^#/) print "chr"$0; else print $0}' Homo_sapiens.GRCh38.105.gtf > Homo_sapiens.GRCh38.105.chr.gtf
time pbrun snpswift \
--input-vcf HG002.realign.vbvm/filteredVCF.vcf \
--anno-vcf 1000Genomes:ALL.wgs.shapeit2_integrated_v1a.GRCh38.20181129.sites.vcf.gz \
--anno-vcf gnomad_v2.1.1:gnomad.exomes.r2.1.1.sites.liftover_grch38.vcf.bgz \
--anno-vcf ClinVar:clinvar.vcf.gz \
--ensembl Homo_sapiens.GRCh38.105.chr.gtf \
--output-vcf HG002.realign.3callers.annotated.vcf
##################
## frequencyfiltration
## Next we'll filter our VCF to remove variants with 1000Genomes allele frequency > 0.05
## and gnomAD AF < 0.05
##################
time pbrun frequencyfiltration \
--in-vcf HG002.realign.3callers.annotated.vcf \
--and-expression "1000Genomes_AF < 0.05" \
--and-expression "gnomad_v2.1.1_AF < 0.05" \
--out-vcf HG002.realign.3callers.annotated.filtered.vcf
##################
## Finally, we'll run our automated vcfqc tool to generate some
## basic QC stats. The vcfqcbybam tool could also be run
## to produce QC stats using an auxilliary BAM file (e.g., when variant calls don't have the desired fields).
##################
time pbrun vcfqc --in-vcf HG002.realign.3callers.annotated.filtered.vcf \
--output-dir HG002.realign.3callers.annotated.filtered.qc \
--depth haplotypecaller_DP --allele-depth deepvariant_AD

总结

带有 Clara Parabricks v3 。 7 .NVIDIA 致力于使 Parabricks 成为加速基因组数据分析的最全面解决方案。它是 WGS 、 WES 和现在的 RNASeq 分析以及基因面板和 UMI 数据的广泛工具包。

关于作者

Eric Dawson 是一位生物信息学科学家,他开发了种系和体细胞基因组分析的加速方法。在加入 NVIDIA 之前, Dawson 博士在剑桥大学和国家癌症研究所完成了博士学位。

Johnny Israeli 是NVIDIA 基因组学和药物发现软件的经理。他在斯坦福大学获得了博士学位,由 Anshul Kundaje 担任顾问,他的论文专注于基因组学的深入学习。他拥有勘萨斯大学物理学硕士和数学学士学位。

审核编辑:郭婷

#############
## Download the 30X hg19-aligned bam from Google's public sequencing of HG002
## and the respective BAI file.
#############
wget https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch37/bam/hiseqx/wgs_pcr_free/30x/HG002.hiseqx.pcr-free.30x.dedup.grch37.bam
wget https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch37/bam/hiseqx/wgs_pcr_free/30x/HG002.hiseqx.pcr-free.30x.dedup.grch37.bam.bai
#############
## Prepare the references so we can realign reads
#############
## Download the original hg19 / hsd37d5 reference
## and create and FAI index
wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
gunzip hs37d5.fa.gz
samtools faidx hs37d5.fa
## Download GRCh38
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
gunzip GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
## Make a .fai index using samtools faidx
samtools faidx GCA_000001405.15_GRCh38_no_alt_analysis_set.fna
## Create the BWA indices
bwa index GCA_000001405.15_GRCh38_no_alt_analysis_set.fna
## Download the Gold Standard indels from 1kg to use as your known-sites file.
wget https://storage.googleapis.com/genomics-public-data/resources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz
## Also grab the tabix index for the file
wget https://storage.googleapis.com/genomics-public-data/resources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.tbi
############
## Run the bam2fq tool to extract reads from the BAM file
## Adjust the --num-threads argument to reflect the number of cores on your system.
## With 8 GPUs and 64 vCPUs this should take ~45 minutes.
############
time pbrun bam2fq \
--ref hs37d5.fa \
--in-bam HG002.hiseqx.pcr-free.30x.dedup.grch37.bam \
--out-prefix HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq \
--num-threads 64
##############
## Run the fq2bam tool to align reads to GRCh38
##############
time pbrun fq2bam \
--in-fq HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq_1.fastq.gz HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq_1.fastq.gz \
--ref Homo_sapiens_assembly38.fasta \
--knownSites Mills_and_1000G_gold_standard.indels.hg38.vcf.gz \
--out-bam HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.bam \
--out-recal-file HG002.hiseqx.pcr-free.30x.dedup.grch37.bam2fq.hg38.BQSR-REPORT.txt

RN

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    4592

    浏览量

    101719
  • gpu
    gpu
    +关注

    关注

    27

    文章

    4417

    浏览量

    126705
收藏 人收藏

    评论

    相关推荐

    基于上转换纳米颗粒的侧流免疫平台,用于超灵敏检测miRNA

    microRNA(miRNA)是一类短小的非编码RNA分子,通常由20 ~ 24个核苷酸组成。它们通过干扰靶基因的转录或翻译来调控基因表达。
    的头像 发表于 03-06 11:36 410次阅读
    基于上转换纳米颗粒的侧流免疫平台,用于超灵敏检测miRNA

    如何使用SBC ToolBox云平台进行时间序列分析

    使用SBC ToolBox云平台时间序列分析模块探索基因集在不同时间点的表达趋势,使用c-means算法对基因集进行聚类分群,寻找出表达趋势一致的基因集。
    的头像 发表于 09-20 16:52 690次阅读
    如何使用SBC ToolBox云平台进行时间序列<b class='flag-5'>分析</b>?

    PCR基因扩增实验室装修设计解决方案-生命科学

    。PCR实验室进风由原有中央空调控制,要求中央空调风口安装到指定位置,且高度为地面铺装好后2600mm处。 ④如果使用荧光PCR仪,扩增室和产物分析室可以合并。若房间进深允许,可设PCR内部专用走廊
    发表于 09-19 14:28

    你身体里有光伏人基因吗?6大职业特征

                原文标题:你身体里有光伏人基因吗?6大职业特征 文章出处:【微信公众号:纳芯微电子】欢迎添加关注!文章转载请注明出处。
    的头像 发表于 09-07 12:00 214次阅读
    你身体里有光伏人<b class='flag-5'>基因</b>吗?6大职业特征

    基因检测仪热保护器工作原理

    基因检测仪通常需要在特定温度范围内进行反应和放大DNA样本。基因检测仪中的热保护器在PCR(聚合酶链反应)和其他分子生物学实验中起到关键作用,确保反应在稳定的温度条件下进行,从而产生准确和可靠的结果。以下是基因检测仪中热保护器的
    的头像 发表于 08-18 13:08 500次阅读
    <b class='flag-5'>基因</b>检测仪热保护器工作原理

    基于液滴微流控的亚硫酸盐测序平台研究

    基因组DNA甲基化图谱在整个表观基因组图谱中具有重要意义。单细胞DNA甲基化组学研究为根据甲基化组学特征检测和分析细胞亚群提供强大助力。
    的头像 发表于 08-17 09:11 868次阅读
    基于液滴微流控的亚硫酸盐测序平台研究

    数字赋能,擎科智能化基因工厂推动产业发展

    北京2023年8月14日 /美通社/ -- 近日,擎科生物副总裁赵春德作客阿里云创新中心直播间,与阿里云产品解决方案架构师石益一起,围绕"基因工厂"话题共话基因合成领域的数字化、产业化和工程化
    的头像 发表于 08-14 22:21 635次阅读

    研发基因测序设备和试剂,真迈生物完成近4亿元C轮融资

    本轮融资资金将主要用于加码基因测序设备和试剂等新产品新技术研发,持续完善产品矩阵;扩大现有产品产能;提速产品医疗器械注册证申报;推动产品在国内外推广应用,进一步加速实现产业化和规模化。
    的头像 发表于 08-04 16:22 904次阅读

    全自动小型基因检测芯片问世 1小时即可完成检测

    松下与比利时微电子研究中心(IMEC)共同开发出了1小时即可完成检测的全自动小型基因检测芯片。该芯片可利用数μL血液来检测SNP(Single Nucleotide Polymorphism,单核苷酸多性态)等基因信息。
    的头像 发表于 08-01 21:29 654次阅读

    GPU助力基因组重测序分析

    等。随着近几年基因测序成本如图 1所示不断下降,在万元内即可完成人类的全基因组测序,GPU的技术发展也带来分析成本与时间的下降,于是用于检测基因组变化的重测序技术在癌症治疗中起到了越来
    的头像 发表于 08-01 10:32 1154次阅读
    GPU助力<b class='flag-5'>基因组</b>重测序<b class='flag-5'>分析</b>

    基因组重测序的应用领域有哪些

    背景介绍 1.1 基因测序在癌症领域上的应用 癌症是目前人类所面临的最大敌人,其发病率随着年龄增长而升高,在人口老龄化加剧的当下,全社会的癌症负担也将愈发严峻。癌症难以治愈的原因之一是肿瘤具有
    的头像 发表于 08-01 10:29 1578次阅读
    <b class='flag-5'>基因组</b>重测序的应用领域有哪些

    中国科学院:开发新型荧光RNA传感器,能监测代谢物、外源药物、蛋白与金属离子等靶标!

    传感新品 【中国科学院:开发新型荧光RNA传感器,能监测代谢物、外源药物、蛋白与金属离子等靶标!】 基因编码的荧光传感器可以在单细胞水平追踪代谢物、蛋白质或重金属离子等细胞内靶标的丰度变化和动力学
    的头像 发表于 08-01 08:46 901次阅读
    中国科学院:开发新型荧光<b class='flag-5'>RNA</b>传感器,能监测代谢物、外源药物、蛋白与金属离子等靶标!

    用于基因组学、转录组学和临床研究的综合NGS软件

    直观的项目设置和分析,与我们获得专利的组装算法相结合,使您能够以无与伦比的轻松和速度组装和对齐NGS数据,以便您可以专注于结果。不再需要在软件工具之间切换来组装序列、识别重要变异并确定差异表达基因。你需要的一切都在这里。
    的头像 发表于 07-03 16:27 864次阅读
    用于<b class='flag-5'>基因组</b>学、转录组学和临床研究的综合NGS软件

    利用水凝胶涂层实现硬质微球在液滴中的超泊松分布装载

    在液滴中高效率地封装单个功能化微球对基于液滴的高通量分析具有至关重要的作用,如单细胞基因组学和数字免疫分析
    的头像 发表于 06-09 10:57 843次阅读
    利用水凝胶涂层实现硬质微球在液滴中的超泊松分布装载

    可以ESP Basic扩展到ESP32吗?

    ,这些库肯定会让他建立很多伟大的项目并学习大量关于 MCU 和 IOT 的问题,你打算 ESP Basic 扩展到 ESP32 吗 ?
    发表于 05-10 07:55