0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探索高压输电第2部分:电压源换流器

电子设计 来源:德州仪器 作者:德州仪器 2021-12-10 10:59 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

该系列文章的第一部分介绍了电网换相换流器(LCC)。这篇文章将讨论电压源换流器(VSC)并比较两种拓扑结构。

VSC目前已成为首选实施对象,原因如下:VSC具有较低的系统成本,因为它们的配站比较简单。VSC实现了电流的双向流动,更易于反转功率流方向。VSC可以控制AC侧的有功和无功功率。VSC不像LCC那样依赖于AC网络,因此它们可以向无源负载供电并具有黑启动能力。使用绝缘栅双极晶体管IGBT)阀,则无需进行晶闸管所需的换流操作,并可实现双向电流流动。

表1对LCC和VSC进行了对比。VSC的电压电平通常在150kV-320kV范围内,但一些电压电平可高达500kV。VSC有几种不同的类型。让我们来看看两电平、三电平和模块化多电平。

VSCs电网换相换流器

换流不需要交流波形。独立于电网工作,具有黑启动功能。在网络的交流侧需要正弦波以进行换流。可能有换流故障。

系统成本成本较低。无需无功补偿。对谐波滤波的需求较低。大多数模块化多电平换流器(MMC)没有谐波滤波。成本较高。需要谐波滤波。需要无功功率补偿。

功率因数控制无功和有功功率。需要交流侧或备用电源的无功电源。

谐波低谐波高谐波

功率流电流可以在两个方向上流动,易于反转功率流。功率流只能通过反转电压极性来反转。

电压和功率电平电压电平(500kV)和功率电平(1000MW)较低。*可承载高达800kV和8000MW。*

换流器由于开关损耗,效率较低。在换流器处损失较少的传输功率。

*参见2016年电气电子工程师协会(IEEE)第16届国际环境与电气工程会议文章“LCC-HVDC和VSC-HVDC技术与应用的综述。”

表1:换流器比较

两电平电压源换流器

如图1所示,两电平VSC具有IGBT,每个IGBT具有与其并联的反向二极管。每个阀包括多个串联的IGBT/二极管组件。使用脉宽调制(PWM)控制IGBT,以帮助形成波形。因为IGBT在实现PWM时多次导通关断,所以会发生开关损耗,而谐波是一个因素。

图1:两电平VSC(HVDC换流器图片由维基百科提供)

三电平电压源换流器

如图2所示,三电平VSC改善了谐波问题。三电平换流器每相有四个IGBT阀。其中两个二极管阀用于钳位电压,但您可以用IGBT代替它们,以获得更好的可控性。打开顶部的两个IGBT获得较高的电压电平,打开中间的两个IGBT获得中间(或零)电压电平,打开底部的两个阀获得较低的电压电平。

图2:三电平VSC(HVDC换流器图片由维基百科提供)

模块化多电平换流器

MMC与另两种换流器不同,因为每个阀就是一个具有内置式平流电容器的换流器模块。MMC取代了含有多个IGBT的阀,它具有多个级联的换流器模块。其中每一个模块都代表了特定的电压电平。MMC中的换流器模块是半桥式或全桥式换流器。

图3:模块化换流器类型(HVDC换流器图片由维基百科提供)

MMC方法显著提高了谐波性能,以致通常不需要滤波。它也比两电平和三电平VSC更有效,因为它没有与IGBT阀相同的开关损耗。

图4:波形输出(图片由SVC PLUS VSC技术提供)

为了监控功率因数、电压和电流电平,可在配站交流和直流的可测量侧测量信号。在接收到该信息时,换流器控制装置可以做出所需的调整,以维持稳定的功率电平和适当的功率因数。保护继电器系统或智能电子器件(IED)收集信号信息。

使用全差分隔离放大器的隔离电流和电压测量是TI参考设计之一,可以测量交流和直流信号。设计指南解释了如何使用隔离运算放大器调节信号以增加振幅,并抑制任何共模电压和噪声。具有板载ADCMCU将分析和解释此信号。根据波形确定的信息反馈到换流器的控制装置,从而将对不断变化的相位和电压电平进行调整以保持稳定性。

编辑:金巧

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 放大器
    +关注

    关注

    146

    文章

    14297

    浏览量

    220981
  • IGBT
    +关注

    关注

    1286

    文章

    4259

    浏览量

    260403
  • 工业
    +关注

    关注

    3

    文章

    2284

    浏览量

    48886
  • 换流器
    +关注

    关注

    0

    文章

    49

    浏览量

    12614
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    集装箱储能系统标准解析系列(一)|IEC 62933-2-1:电能存储(EES)系统 2-1部分-储能单元参数和试验方法

    IEC 62933-2-1 电能存储(EES)系统 2-1部分:储能单元参数和试验方法
    的头像 发表于 11-25 15:40 700次阅读
    集装箱储能系统标准解析系列(一)|IEC 62933-<b class='flag-5'>2</b>-1:电能存储(EES)系统 <b class='flag-5'>第</b><b class='flag-5'>2</b>-1<b class='flag-5'>部分</b>-储能单元参数和试验方法

    集装箱储能系统标准解析系列(三)| IEC TS 62933-4-1电能存储系统(EES) 4-1部分:环境问题指导

    IEC TS 62933-4-1电能存储系统(EES) 4-1部分:环境问题指导 通用规范
    的头像 发表于 11-25 15:11 164次阅读
    集装箱储能系统标准解析系列(三)| IEC TS 62933-4-1电能存储系统(EES) <b class='flag-5'>第</b>4-1<b class='flag-5'>部分</b>:环境问题指导

    艾麦斯储能方案之分布式高压直流供电解决方案

    、可靠性和经济性方面具有以下优势: 然而,高压直流输电也存在一些限制因素,如不能用变压来改变电压等级、换流站费用高、控制复杂等。
    的头像 发表于 10-31 19:30 89次阅读
    艾麦斯储能方案之分布式<b class='flag-5'>高压</b>直流供电解决方案

    ​​无探头与高压探头的技术比较与应用选择​​

    文章对比了无探头与高压探头在设计原理、性能参数及应用场景上的差异,指出无探头适用于低电压测量,高压探头适合高
    的头像 发表于 10-09 16:18 180次阅读

    ​​无探头与高压探头的技术比较与应用选择​​

    本文对比了无探头和高压探头在设计原理、性能参数、应用场景等方面的特点,为选择合适探头提供参考。
    的头像 发表于 10-09 13:43 321次阅读

    ​​高压探头:高电压测量的精密之眼​​

    高压探头专为高共模电压环境设计,实现安全、精准测量微小差分信号,具备高输入阻抗、宽频带和强共模抑制能力。
    的头像 发表于 09-09 16:46 685次阅读

    高压探头能测整流桥电压吗?

    电压,但可以通过一些方法间接地进行测量。例如,可以在整流桥的输出端使用一个电容耦合将直流信号转换为交流信号,然后再使用高压探头进行测量。这样可以将整流桥输出的直流信号转换为交流
    发表于 07-11 09:21

    整流电路电压测量中高压探头的应用探讨

    在电力电子测量领域,高压探头的使用存在特定的技术边界。针对整流桥电路的电压检测需求,我们需要从测量原理和技术参数两个维度进行综合考量。 一、整流电路特性与测量挑战 典型桥式整流
    的头像 发表于 04-16 17:10 484次阅读

    DLPC3433部分DSI失效的原因?如何解决?

    部分板子,在无法实现4步,始终无法显示系统输出的DSI,接入后,仍然是马赛克图案。 我们可以确保我们输出的DSI没有问题,因为正常板子是可以输出完整的DSI视频信息,同时我们是同一批生产的板子,目前出现不一致的情况。 请求帮助: 分析DLPC3433
    发表于 02-21 07:24

    运算放大器速成课程2部分:关键参数教程

    电路设计人员根据几个器件参数选择运算放大器。这些参数必须满足运算放大器应用的要求。下面列出了最常考虑的参数。本教程的2部分解释了它们的定义和用途。
    的头像 发表于 02-20 18:22 942次阅读
    运算放大器速成课程<b class='flag-5'>第</b><b class='flag-5'>2</b><b class='flag-5'>部分</b>:关键参数教程

    运算放大器速成课程1部分:基础教程

    理解运算放大器的基本原理对于在工业、汽车和电信应用中销售微控制(MCU)至关重要。运算放大器对现实传感的输出信号进行放大和滤波,以便模数转换能够访问这些信号,无论它们是分立器件还是集成到MCU中。本教程的
    的头像 发表于 02-20 18:05 981次阅读
    运算放大器速成课程<b class='flag-5'>第</b>1<b class='flag-5'>部分</b>:基础教程

    ZGF系列一体式直流高压发生手册

    高压发生是根据中国电力行业标准DL/T848.1-2004《高压试验装置通用技术条件 1部分:直流
    发表于 02-19 16:33 0次下载

    ISO 16750-2-2010 道路车辆电气和电子设备的环境条件和试验2部分:电气负载

    电子发烧友网站提供《ISO 16750-2-2010 道路车辆电气和电子设备的环境条件和试验2部分:电气负载.pdf》资料免费下载
    发表于 02-11 15:39 4次下载

    GB/T 31467.1-2015电动汽车用锂离子动力蓄电池包和系统1部分:高功率应用测试规程

    GBT31467.1-2015 电动汽车用锂离子动力蓄电池包和系统 1部分 高功率应用测试规程
    发表于 02-10 15:40 3次下载

    松下MPS媒体制作平台第八篇:视频混合插件(第三部分)

    多种视频素材进行合成。 关于视频混合的操作介绍,我们一共制作了四部分的MPS媒体制作平台教程,本期是第三部分。在进入本部分之前,您也可以参阅第一、二
    的头像 发表于 01-08 10:10 935次阅读
    松下MPS媒体制作平台第八篇:视频混合<b class='flag-5'>器</b>插件(第三<b class='flag-5'>部分</b>)