0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探究大功率IGBT模块ST20在风电中的应用

赛米控电力电子 来源:赛米控电力电子 作者:SEMIKRON 2021-10-19 18:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着碳中和成为世界各国新的共同目标,新能源快速发展成为必然,而风电在我国能源消费比重也在不断增加。赛米控推出的低杂散电感、易于并联、大电流、标准封装的ST20模块,为大功率风电变流器设计提供了新选择。本文将介绍大功率IGBT模块ST20在风电应用中的优势。

1.背景

1.1 风电大功率趋势

风电大兆瓦时代已经来临,尤其是海上风电。众所周知,海上风电机组不论是施工难度还是投资额度均远高于陆上,若规划相同规模风场,机组单机容量的增加可以减少机组数量,从而有效降低单位投资,减少成本。在降本提效的要求下,风机单机功率增大已成为不可逆转的趋势,单机功率增加可以有效降低风场的度电运营成本。目前西门子歌美飒单机功率达到14MW,国内8-10MW样机也投入运行。

1.2 国内风电变流器发展趋势

大功率意味着大电流,为了减少系统成本,国内1140V 风机系统越来越成为主流。将风机电压从传统的690V提升至1140V,同等功率的风机电流降低35%,大幅提升电气传动系统和输变电系统的效率,降低度电成本,使得产品具备更强的市场竞争力。

对于1140V变流器,如果采用两电平拓扑,需要3.3kV电压等级IGBT模块,但是3.3kV器件的开关和导通损耗无法满足系统的效率及开关频率的要求,同时价格也更贵。因此,采用1700V的SEMiX3p封装半桥模块组成三电平NPC或者ANPC拓扑是目前国内主流方案,目前全功率单机做到5.XMW,但是随着变流器功率增大,采用1700V的SEMiX3p封装半桥模块方案存在内管电压尖峰、模块并联均流、输出电流偏小需要系统级并联等问题。赛米控推出的低杂散电感、易于并联、大电流、标准封装的ST20模块,为大功率风电变流器应用提供了新的设计思路。

ST20在大功率风电中应用的优势

2.1 杂散电感小,便于叠层母排设计

采用1700V的SEMiX3p封装半桥模块搭建三电平NPC拓扑如图2,因为模块本身结构的限制,连接模块的正负端子时无法使用叠层母排设计。当输出电压和输出电流有不同的相位的时候,存在长换流回路,需要经过三个模块,杂散电感通常在200nH左右,此时内管模块在关断时会产生比较高的尖峰电压。通常需要选择比较大的关断电阻值,驱动两级关断,有源钳位或者吸收电路来解决这一问题,避免模块过压损坏,但这些措施会增加功率损耗及成本。

采用ST20模块,输入输出端子连接简单,易于叠层母排设计,可以减小换流回路的杂散电感。同时,模块内部采用叠层设计,杂散电感较低(10nH),约为SEMiX3p模块一半。长换流回路工况下,可以减小模块关断尖峰电压,甚至无需增大关断电阻,增加吸收电路等措施,降低电路设计难度。

2.2 均流特性好,易于并联

由于单个模块电流的限制,大功率的风电变流器无论两电平还是三电平需要多个模块的并联使用。并联模块是否均流,影响变流器的输出容量。为了更好的均流效果,除了考虑驱动及控制,IGBT模块外部结构如连接铜排等因素也需要考虑对称均流设计,而模块内部布局同样会影响单个IGBT芯片的电流分布,最终影响系统输出能力。如图4为SEMiX3p内部布局,可以看到上下管IGBT及Diode到功率端子并非等距对称设计。而图5中ST20内部对称的布局设计,有更好的内部电流平衡特性。

四个ST20并联搭建两电平测试平台,尽管人为把短路线连接位置靠右,四个模块电流均流特性依然很好,不平衡度在5%以内。正常工作时,其均流特性表现会更好。

2.3 高功率密度,满足大功率和可靠性要求

赛米控ST20适合高功率大电流密度的要求,是目前功率密度最大的封装,与1700V/600A的SEMiX3p相比,1700V/1200A的ST20电流密度从约6.4A/cm2提高到 8.6A/cm2。

MW级的变流器需要IGBT模块并联,并联的数量取决于IGBT的电流等级。为了获得相同的输出功率,使用SEMiX3p需要更多数量模块并联,更大面积的散热器,同时还有模块均流问题,增加结构和驱动设计的难度及成本。同时我们知道海上风电环境更恶劣,一旦出现故障,维护成本和经济损失更大,因此对可靠性的要求也更高。而IGBT作为变流器的核心,减少IGBT、配套驱动、连接线缆、功率组件等数量可以提高变流器的可靠性。

我们简单对比1140V 3L拓扑,目前市场上SEMiX3p在三电平应用中最大并联数为4个,基于此不同数量ST20和SEMiX3p并联可能达到的输出功率估算如图8。因为实际应用条件可能不同,比如开关频率,电压电流及散热系统等,因此图8仅供参考。

以1140V全功率4.8MW风电为例,机侧额定输出电流2900A有效值,通常需要8个600A的SEMiX3p并联,如前文提到,市场上目前三电平IGBT模块最大并联数为4个,因此当使用SEMiX3p时需要2组2.xMW系统经过均流电抗器再并联使用;而当使用ST20时无需系统并联,单系统使用4个模块并联即可,只需要一半的驱动及连接电缆,同时降低了系统并联复杂性及成本。

根据工况,用赛米控在线仿真平台SemiSel初步评估SKM1200GB17E4S2I4的结温。散热器热阻0.002k/W,其他参数见表1。

通过仿真结果可以看出,电机侧最高结温113.02℃,网侧最高结温117.18℃,离模块允许工作结温还有超过30℃裕量,可进一步优化开关特性或者平衡散热和成本。如果变流器功率达到10MW,使用赛米控ST20模块节省的驱动、电缆、功率组件等会更多,整机可靠性也会更高。

3.参考设计

基于ST20的两电平风电变流器Stack,双面水冷设计,单面四个SKM1200GB17E4S2I4并联。使用灵活,三个Stack组成的变流器输出功率达到3MW;单个Stack双面也可以并联使用,增大功率。基于ANPC拓扑的三电平组件正在设计中。

4.总结

综上所述,风电大兆瓦时代来临,尤其是海上风电,风机单机功率增大已成为不可逆转的趋势。采用SEMiX3p半桥模块组成1140V三电平NPC或者ANPC是目前国内主流方案,但是随着变流器功率增大,这种方案存在内管电压尖峰、模块并联均流及输出电流偏小需要系统级并联等问题。赛米控推出的低杂散电感、易于并联、大电流、标准封装的ST20模块,为大功率变流器的设计提供了新选择。使用ST20可降低系统设计的复杂性及成本,提高变流器的可靠性。因此,ST20模块非常适合大功率风电变流器应用。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IGBT
    +关注

    关注

    1286

    文章

    4260

    浏览量

    260468
  • 变流器
    +关注

    关注

    7

    文章

    309

    浏览量

    34318
  • NPC
    NPC
    +关注

    关注

    0

    文章

    30

    浏览量

    5473

原文标题:大功率IGBT模块ST20在风电中的应用

文章出处:【微信号:SEMIKRON-power,微信公众号:赛米控电力电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    5 GHz 大功率 WLAN 前端模块 skyworksinc

    电子发烧友网为你提供()5 GHz 大功率 WLAN 前端模块相关产品参数、数据手册,更有5 GHz 大功率 WLAN 前端模块的引脚图、接线图、封装手册、中文资料、英文资料,5 GH
    发表于 10-15 18:30
    5 GHz <b class='flag-5'>大功率</b> WLAN 前端<b class='flag-5'>模块</b> skyworksinc

    倾佳电子SiC功率模块:超大功率全桥LLC应用技术优势深度分析报告

    电源、电力电子设备和新能源汽车产业链。倾佳电子聚焦于新能源、交通电动化和数字化转型三大方向,并提供包括IGBT、SiC MOSFET、GaN等功率半导体器件以及新能源汽车连接器。 倾佳电子杨茜致力于推动国产SiC碳化硅模块
    的头像 发表于 09-19 15:32 525次阅读
    倾佳电子SiC<b class='flag-5'>功率</b><b class='flag-5'>模块</b>:超<b class='flag-5'>大功率</b>全桥LLC应用技术优势深度分析报告

    产品推荐 | MOS管大功率电源上的应用

    大功率电源的定义及应用大功率电源是指功率500瓦以上的电源产品,能给机器提供稳定的电力供应,也就是用通过电路控制开关管进行高速的导通与截止。将直流电转化为高频率的交流电提供给变压器进
    的头像 发表于 09-09 14:08 477次阅读
    产品推荐 | MOS管<b class='flag-5'>在</b><b class='flag-5'>大功率</b>电源上的应用

    ATA-3080C功率放大器压电材料高频高能大功率系统的应用

    实验名称:测试压电材料的大功率激励下的性能指标参数变化 研究方向:压电材料的大功率性能参数表征 实验目的:本实验旨在探究不同PT含量的PMN-PT单晶
    的头像 发表于 09-04 14:38 302次阅读
    ATA-3080C<b class='flag-5'>功率</b>放大器<b class='flag-5'>在</b>压电材料高频高能<b class='flag-5'>大功率</b>系统<b class='flag-5'>中</b>的应用

    PKDV5351高压差分探头大功率电机驱动系统共模噪声分析的关键应用

    PKDV5351高压差分探头大功率电机驱动系统共模噪声分析的关键应用 一、 引言:共模噪声的行业挑战 工业变频器、伺服驱动等大功率电机
    的头像 发表于 08-26 13:48 386次阅读
    PKDV5351高压差分探头<b class='flag-5'>在</b><b class='flag-5'>大功率</b>电机驱动系统共模噪声分析<b class='flag-5'>中</b>的关键应用

    面向大功率家电,ST推出第二代IH系列1600V IGBT

    电子发烧友网综合报道 最近,意法半导体推出了一款面向大功率家电应用的第二代IH系列1600V IGBT STGWA30IH160DF2,该器件兼具1600 V的额定击穿电压、优异的热性能和软开关拓扑
    发表于 07-28 07:29 3103次阅读

    IGBT静态参数测试仪系统

    ,还可以测量大功率二极管 、IGBT模块大功率 IGBT大功率双极型晶体管MOS管等器件的
    的头像 发表于 07-08 17:31 1792次阅读

    MCU为什么不能直接驱动大功率MOS管

    设计驱动电路时,经常会用到MOS管做开关电路,而在驱动一些大功率负载时,主控芯片并不会直接驱动大功率MOS管,而是MCU和大功率MOS管
    的头像 发表于 06-06 10:27 2646次阅读
    MCU为什么不能直接驱动<b class='flag-5'>大功率</b>MOS管

    大功率IGBT模块你了解多少?结构特性是什么?主要应用在哪里?

    一、核心定义与结构特性 大功率IGBT模块是以绝缘栅双极型晶体管(IGBT)为核心,集成续流二极管(FWD)的复合功率器件,通过多层封装技术
    的头像 发表于 05-22 13:49 999次阅读
    <b class='flag-5'>大功率</b><b class='flag-5'>IGBT</b><b class='flag-5'>模块</b>你了解多少?结构特性是什么?主要应用在哪里?

    WiFi 6E 大功率 WLAN 前端模块 skyworksinc

    电子发烧友网为你提供()WiFi 6E 大功率 WLAN 前端模块相关产品参数、数据手册,更有WiFi 6E 大功率 WLAN 前端模块的引脚图、接线图、封装手册、中文资料、英文资料,
    发表于 05-15 18:31
    WiFi 6E <b class='flag-5'>大功率</b> WLAN 前端<b class='flag-5'>模块</b> skyworksinc

    中国中车超大功率电机组“凌号”成功下线

    近日,国内应用于沙戈荒地区的超大功率电机组——“凌号”吉林中车松原新能源装备产业园成功下线。作为国内首个下线的12兆瓦级陆上风电机组,“凌
    的头像 发表于 01-20 11:22 957次阅读

    车大连公司新一代大功率高速柴油机点火成功

    近日,中国中车集团旗下车大连公司自主研制的新一代D180-20大功率高速柴油机启机点火成功。
    的头像 发表于 01-17 10:40 820次阅读

    大功率直流电源工业的应用

    现代工业领域,电力是推动生产和发展的关键因素之一。随着技术的进步,对电力的需求也不断增长,特别是对大功率直流电源的需求。大功率直流电源以其高效率、高稳定性和高可靠性,
    的头像 发表于 12-23 10:16 1671次阅读

    Tips:大功率电源PCB绘制注意事项

    现代电子设备大功率电源可以为服务器、电动汽车充电器以及各类工业设备提供稳定、可靠的电力供应,确保设备能够正常运行。而PCB负责电子元件间的信号和电源传输,
    发表于 12-11 18:58

    2W大功率LR1121无线通讯模块#大功率模块

    大功率模块
    思为无线
    发布于 :2024年12月10日 10:34:14