0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

赛灵思Versal自适应计算加速平台指南

YCqV_FPGA_EETre 来源:Xilinx赛灵思官微 作者:Xilinx 2021-10-11 11:33 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

赛灵思 Versal 自适应计算加速平台 (ACAP) 设计方法论是旨在帮助精简 Versal 器件设计进程的一整套最佳实践。鉴于这些设计的规模与复杂性,因此必须通过执行特定步骤与设计任务才能确保设计每个阶段都能成功完成。

本指南将分为以下五大章节,遵循指南里的步骤和最佳实践进行操作,将有助于您以尽可能最快且最高效的方式实现期望设计目标。

PART 1

仿真流程

为了应对仿真范围、仿真抽象和仿真目的等方面的不同需求,赛灵思为 Versal ACAP 设计的各组件提供了专用的流程,包括 AI 引擎、PS 和 PL。此外,赛灵思还支持对由 PL、PS 和(可选)AI 引擎组件组成的完整系统进行协同仿真。

具体章节提供了有关每个仿真流程的范围和目的的详细信息,请您下载完整版指南进行查阅。

PART 2

设计收敛

设计收敛包括满足所有系统性能、时序和功耗要求,并成功确认硬件中的功能。在设计收敛阶段,您可开始通过实现工具运行设计,因此首先需要考量的就是时序和功耗注意事项。

在此设计收敛阶段、估算设计利用率,时序和功耗可以得到准确性更高的结果。这样即可为您提供机会来重新确认时序和功耗目标是可达成的。为确认设计能够满足其要求,赛灵思建议制定时序基线和功耗基线。时序基线侧重于在定义准确的时序约束之后,评估时序路径。功耗基线则需要为 Vivado 提供正确的翻转信息,以便确定准确的动态功耗信息。

当您基于基线开始迭代后,应在改善时序时复检功耗数值。通常,建议您尽早开启整套功耗节省功能,然后对导致出现时序问题的个别项进行缩减,这样有助于达成适当的平衡,从而满足设计收敛目标。在实现阶段尽早联动开展功耗分析和时序分析能够节省工程设计时间,实现更准确的工程规划。这样即可留出更多时间用于探索各种工程设计解决方案,不至于在设计周期后期才发现更合适的解决方案。

PART 3

系统性能收敛

Versal 器件是围绕异构计算引擎来构建的,这些引擎通过 NoC 或 PL 彼此相连并通过高性能收发器和 I/O 连接到外部系统。在系统应用与映射阶段,器件接口和总体计算要求可用于指定器件中实现的每个计算和控制功能的目标性能。每个功能都设计为映射到最合适的硬件资源,此类资源使用对应编程语言和编译软件(例如,对应嵌入式处理器系统使用系统软件,对应 AI 引擎或 PL 内核使用 C/C++ 语言、对应高性能 PL 内核或固件则使用 RTL 等)。

各设计团队必须先在功能级别确认功能和期望的性能,然后再将其集成到部分系统应用或整个系统中。在集成阶段中,功能可能失效,且性能可能降级。由于 Versal 器件所支持的系统应用的复杂性和异构性质,因此必须事先明确并规划分析和调试方法论。

Vitis 和 Vivado 工具均为综合性且互补性的设计环境,可提供在硬件中进行功能仿真、设计特性报告以及数据测量或探测所需的所有功能。具体章节提供了分步骤分析方法建议,详情请下载完整版指南进行查阅。

PART 4

配置与调试

成功完成设计实现后,下一步就是将设计加载到器件中并在硬件上运行。配置是指将特定应用的数据加载到器件内部存储器中的过程。如果设计在硬件上不满足要求,则需要进行调试。具体详细信息,可参阅相关资源获取。

PART 5

确认

Versal ACAP 的多种不同计算域给传统 FPGA 确认方法带来了诸多挑战。除了可编程逻辑和处理器子系统外,Versal器件还包含 AI 引擎,使系统确认任务比传统 FPGA 更复杂。

此确认方法是围绕以下关键概念构建的:

• 块/IP 确认:PL 内各 RTL 和 HLS IP 可先单独确认,然后再执行系统集成。

• AI 引擎确认:位于接口级别的 AI 引擎可视作为 AXI-MM 或 AXI4-Stream IP。

• 系统确认:完成各块确认后,即可确认整个系统、使用处理器来协调数据流、测试矢量生成、监控等。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 仿真
    +关注

    关注

    53

    文章

    4404

    浏览量

    137644
  • ACAP
    +关注

    关注

    1

    文章

    54

    浏览量

    8660

原文标题:Versal ACAP 系统集成和确认方法指南

文章出处:【微信号:FPGA-EETrend,微信公众号:FPGA开发圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AMD Versal自适应SoC内置自校准的工作原理

    本文提供有关 AMD Versal 自适应 SoC 内置自校准 (BISC) 工作方式的详细信息。此外还详述了 Versal 的异步模式及其对 BISC 的影响。
    的头像 发表于 10-21 08:18 3840次阅读

    高压放大器驱动:基于FPGA的SPGD自适应光学控制平台的探索

    实验名称: 基于FPGA的SPGD自适应光学控制平台整体设计 测试目的: 在分析优化式自适应光学系统平台的基础上,结合SPGD算法原理以及项目实际需求,对SPGD
    的头像 发表于 10-11 17:48 658次阅读
    高压放大器驱动:基于FPGA的SPGD<b class='flag-5'>自适应</b>光学控制<b class='flag-5'>平台</b>的探索

    MicroBlaze V处理器嵌入式设计用户指南

    AMD 自适应计算文档按一组标准设计进程进行组织,以便帮助您查找当前开发任务相关的内容。您可以在设计中心页面上访问 AMD Versal 自适应 SoC 设计进程。您还可以使用设计流程助手来更深入了解设计流程,并找到特定于预期设
    的头像 发表于 09-25 16:56 781次阅读
    MicroBlaze V处理器嵌入式设计用户<b class='flag-5'>指南</b>

    电磁干扰自适应抑制系统平台全面解析

    电磁干扰自适应抑制系统平台全面解析
    的头像 发表于 09-17 16:12 420次阅读
    电磁干扰<b class='flag-5'>自适应</b>抑制系统<b class='flag-5'>平台</b>全面解析

    电磁干扰自适应抑制系统平台全面解析

    电磁干扰自适应抑制系统平台精简解析 北京华盛恒辉电磁干扰自适应抑制系统平台,是针对复杂电磁环境下电子设备稳定运行需求设计的综合性解决方案,通过整合多元技术实现动态、智能的干扰抑制。以下
    的头像 发表于 09-17 16:11 274次阅读

    在AMD Versal自适应SoC上使用QEMU+协同仿真示例

    在任意设计流程中,仿真都是不可或缺的关键组成部分。它允许用户在无任何物理硬件的情况下对硬件系统进行确认。这篇简短的博客将介绍如何使用 QEMU + 协同仿真来对 AMD Versal 自适应 SoC
    的头像 发表于 08-06 17:21 1683次阅读
    在AMD <b class='flag-5'>Versal</b><b class='flag-5'>自适应</b>SoC上使用QEMU+协同仿真示例

    利用AMD VERSAL自适应SoC的设计基线策略

    您是否准备将设计迁移到 AMD Versal 自适应 SoC?设计基线是一种行之有效的时序收敛方法,可在深入研究复杂的布局布线策略之前,帮您的 RTL 设计奠定坚实的基础。跳过这些步骤可能会导致
    的头像 发表于 06-04 11:40 599次阅读

    Versal 600G DCMAC Subsystem LogiCORE IP产品指南

    AMD 自适应计算文档按一组标准设计进程进行组织,以便帮助您查找当前开发任务相关的内容。您可以在设计中心页面上访问 AMD Versal 自适应 SoC 设计进程。您还可以使用设计流程助手来更深入了解设计流程,并找到特定于预期设
    的头像 发表于 06-03 14:25 576次阅读
    <b class='flag-5'>Versal</b> 600G DCMAC Subsystem LogiCORE IP产品<b class='flag-5'>指南</b>

    适用于Versal的AMD Vivado 加快FPGA开发完成Versal自适应SoC设计

    设计、编译、交付,轻松搞定。更快更高效。 Vivado 设计套件提供经过优化的设计流程,让传统 FPGA 开发人员能够加快完成 Versal 自适应 SoC 设计。 面向硬件开发人员的精简设计流程
    的头像 发表于 05-07 15:15 1037次阅读
    适用于<b class='flag-5'>Versal</b>的AMD Vivado  加快FPGA开发完成<b class='flag-5'>Versal</b><b class='flag-5'>自适应</b>SoC设计

    第二代AMD Versal Premium系列SoC满足各种CXL应用需求

    第二代 AMD Versal Premium 系列自适应 SoC 是一款多功能且可配置的平台,提供全面的 CXL 3.1 子系统。该系列自适应 SoC 旨在满足从简单到复杂的各种 CX
    的头像 发表于 04-24 14:52 965次阅读
    第二代AMD <b class='flag-5'>Versal</b> Premium系列SoC满足各种CXL应用需求

    面向AI与机器学习应用的开发平台 AMD/Xilinx Versal™ AI Edge VEK280

    解读: *附件:VEK280_用户指南 开发手册.pdf 一、核心配置与架构 ​ 自适应SoC芯片 基于AMD Versal™ AI Edge系列VE2802自适应SoC,集成AI引擎
    的头像 发表于 04-11 18:33 2023次阅读
    面向AI与机器学习应用的开发<b class='flag-5'>平台</b> AMD/Xilinx <b class='flag-5'>Versal</b>™ AI Edge VEK280

    AMD Versal自适应SoC器件Advanced Flow概览(下)

    在 AMD Vivado Design Suite 2024.2 版本中,Advanced Flow 自动为所有 AMD Versal 自适应 SoC 器件启用。请注意,Advanced Flow
    的头像 发表于 01-23 09:33 1339次阅读
    AMD <b class='flag-5'>Versal</b><b class='flag-5'>自适应</b>SoC器件Advanced Flow概览(下)

    AMD Versal自适应SoC器件Advanced Flow概览(上)

    在最新发布的 AMD Vivado Design Suite 2024.2 中,引入的新特性之一是启用了仅适用于 AMD Versal 自适应 SoC 器件的 Advanced Flow 布局布线
    的头像 发表于 01-17 10:09 1164次阅读
    AMD <b class='flag-5'>Versal</b><b class='flag-5'>自适应</b>SoC器件Advanced Flow概览(上)

    AMD Versal自适应SoC DDRMC如何使用Micron仿真模型进行仿真

    AMD Versal 自适应 SoC 器件上 DDR4 硬核控制器 DDRMC 跑仿真时,按照 IP 的默认设置,在 IP wizard 中使能了“Internal Responder”,就可以
    的头像 发表于 01-10 13:33 1377次阅读
    AMD <b class='flag-5'>Versal</b><b class='flag-5'>自适应</b>SoC DDRMC如何使用Micron仿真模型进行仿真

    低温失效的原因,有没有别的方法或者一些见解?

    低温失效的原因,有没有别的方法或者一些见解。就是芯片工作温度在100°--40°区间,然后呢我们到了0°以下就不工作了,然后在低温的情况下监测了电流和电压都正常,频率也都正常,频率不是FPGA的频率是晶振的频率,焊接的话七
    发表于 12-30 16:28