0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Python的矩阵传播机制

Linux爱好者 来源:SimpleAI 作者:Beyond 2021-09-30 16:53 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、Python的矩阵传播机制(Broadcasting)

我们知道在深度学习中经常要操作各种矩阵(matrix)。

回想一下,我们在操作数组(list)的时候,经常习惯于用**for循环(for-loop)**来对数组的每一个元素进行操作。例如:

my_list = [1,2,3,4]

new_list = []

for each in my_list:

new_list.append(each*2)

print(new_list) # 输出 [2,3,4,5]

如果是矩阵呢:

my_matrix = [[1,2,3,4],

[5,6,7,8]]

new_matrix = [[],[]]

for i in range(2):

for j in range(4):

new_matrix[i].append(my_matrix[i][j]*2)

print(new_matrix)# 输出 [[2, 4, 6, 8], [10, 12, 14, 16]]

实际上,上面的做法是十分的低效的!数据量小的话还不明显,如果数据量大了,尤其是深度学习中我们处理的矩阵往往巨大,那用for循环去跑一个矩阵,可能要你几个小时甚至几天。

Python考虑到了这一点,这也是本文主要想介绍的**“Python的broadcasting”即传播机制**。

先说一句,python中定义矩阵、处理矩阵,我们一般都用numpy这个库。

二、下面展示什么是python的传播机制

import numpy as np# 先定义一个3×3矩阵 A:

A = np.array(

[[1,2,3],

[4,5,6],

[7,8,9]])

print(“A:

”,A)

print(“

A*2:

”,A*2) # 直接用A乘以2print(“

A+10:

”,A+10) # 直接用A加上10

运行结果:

A:

[[1 2 3]

[4 5 6]

[7 8 9]]

A*2:

[[ 2 4 6]

[ 8 10 12]

[14 16 18]]

A+10:

[[11 12 13]

[14 15 16]

[17 18 19]]

接着,再看看矩阵×(+)矩阵:

#定义一个3×1矩阵(此时也可叫向量了)

B = np.array([[10],

[100],

[1000]])

print(“

B:

”,B)

print(“

A+B:

”,A+B)

print(“

A*B:

”,A*B)

运行结果:

B:

[[ 10]

[ 100]

[1000]]

A+B:

[[ 11 12 13]

[ 104 105 106]

[1007 1008 1009]]

A*B:

[[ 10 20 30]

[ 400 500 600]

[7000 8000 9000]]

可见,虽然A和B的形状不一样,一个是3×3,一个是3×1,但是我们在python中可以直接相加、相乘,相减相除也可以。

也许看到这,大家都对broadcasting有感觉了。

用一个图来示意一下:

所谓“传播”,就是把一个数或者一个向量进行“复制”,从而作用到矩阵的每一个元素上。

有了这种机制,那进行向量和矩阵的运算,就太方便了!理解了传播机制,就可以随心所欲地对矩阵进行各种便捷的操作了。

利用numpy的内置函数对矩阵进行操作:

numpy内置了很多的数学函数,例如np.log(),np.abs(),np.maximum()等等上百种。直接把矩阵丢进去,就可以算出新矩阵!示例:

print(np.log(A))

输出把A矩阵每一个元素求log后得到的新矩阵:

array([[0. , 0.69314718, 1.09861229],

[1.38629436, 1.60943791, 1.79175947],

[1.94591015, 2.07944154, 2.19722458]])

再比如深度学习中常用的ReLU激活函数,就是y=max(0,x),

也可以对矩阵直接运算:

X = np.array([[1,-2,3,-4], [-9,4,5,6]])Y = np.maximum(0,X)print(Y)

得到:

[[1 0 3 0] [0 4 5 6]]

更多的numpy数学函数,可以参见文档:https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.math.html

三、定义自己的函数来处理矩阵

其实这才是我写下本文的目的。。。前面扯了这么多,只是做个铺垫(/ω\)

我昨天遇到个问题,就是我要对ReLU函数求导,易知,y=max(0,x)的导函数是:y’ = 0 if x《0y’ = 1 if x》0但是这个y’(x)numpy里面没有定义,需要自己构建。即,我需要将矩阵X中的小于0的元素变为0,大于0的元素变为1。搞了好久没弄出来,后来在StackOverflow上看到了解决办法:

def relu_derivative(x):

x[x《0] = 0

x[x》0] = 1

return x

X = np.array([[1,-2,3,-4],

[-9,4,5,6]])

print(relu_derivative(X))

输出:

[[1 0 1 0]

[0 1 1 1]]

**居然这么简洁就出来了!!!**ミ゚Д゚彡 (゚Д゚#)

这个函数relu_derivative中最难以理解的地方,就是**x[x》0]**了。于是我试了一下:

X = np.array([[1,-2,3,-4],

[-9,4,5,6]])

print(X[X》0])

print(X[X《0])

输出:

[1 3 4 5 6]

[-2 -4 -9]

它直接把矩阵X中满足条件的元素取了出来!原来python对矩阵还有这种操作!

震惊了我好久~

所以可以这么理解,X[X》0]相当于一个“选择器”,把满足条件的元素选出来,然后直接全部赋值。

用这种方法,我们便可以定义各种各样我们需要的函数,然后对矩阵整体进行更新操作了!

四、综上

可以看出,python以及numpy对矩阵的操作简直神乎其神,方便快捷又实惠。其实上面忘了写一点,那就是计算机进行矩阵运算的效率要远远高于用for-loop来运算,

不信可以用跑一跑:

# vetorization vs for loop# define two arrays a, b:

a = np.random.rand(1000000)

b = np.random.rand(1000000)

# for loop version:

t1 = time.time()

c = 0

for i in range(1000000):

c += a[i]*b[i]

t2 = time.time()

print(c)

print(“for loop version:”+str(1000*(t2-t1))+“ms”)

time1 = 1000*(t2-t1)

# vectorization version:

t1 = time.time()

c = np.dot(a,b)

t2 = time.time()

print(c)

print(“vectorization version:”+str(1000*(t2-t1))+“ms”)

time2 = 1000*(t2-t1)

print(“vectorization is faster than for loop by ”+str(time1/time2)+“ times!”)

运行结果:

249765.8415288075

for loop version:627.4442672729492ms

249765.84152880745

vectorization version:1.5032291412353516ms

vectorization is faster than for loop by 417.39762093576525 times!

可见,用for方法和向量化方法,计算结果是一样,但是后者比前者快了400多倍!

因此,在计算量很大的时候,我们要尽可能想办法对数据进行Vectorizing,即“向量化”,以便让计算机进行矩阵运算。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • for
    for
    +关注

    关注

    0

    文章

    44

    浏览量

    16245
  • python
    +关注

    关注

    57

    文章

    4857

    浏览量

    89581
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123905

原文标题:消灭 for 循环!Python 的矩阵传播机制和矩阵运算

文章出处:【微信号:LinuxHub,微信公众号:Linux爱好者】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中兴通讯斩获ESG年度传播影响力先锋奖

    近日,在“2025零碳使命国际气候峰会暨绿色发展年度致敬典礼”上,中兴通讯凭借在环境、社会与公司治理(ESG)领域的卓越实践及全球传播影响力,荣获凤凰卫视“ESG年度传播影响力先锋”奖。这一殊荣不仅充分肯定了中兴通讯的可持续发展战略和
    的头像 发表于 10-29 15:10 442次阅读

    termux如何搭建python游戏

    termux如何搭建python游戏 Termux搭建Python游戏开发环境的完整指南 一、Termux基础环境准备 Termux是一款无需root即可在安卓设备上运行的Linux终端
    发表于 08-29 07:06

    python app不能运行怎么解决?

    ;python_agent[1241]: xmlrpc request method supervisor.stopProcess failed;python_agent[1241]: xmlrpc request method supervisor.stopProces
    发表于 08-06 06:27

    CAN总线传播延迟过大导致通信异常现象解析

    应答信号,影响数据传输确认机制;也可能会引发数据采样错误,导致发送与接收位不一致,产生位错误。本文将在不考虑其它影响下,对传播延迟过大造成的应答错误现象进行详细解析。相
    的头像 发表于 07-15 11:47 560次阅读
    CAN总线<b class='flag-5'>传播</b>延迟过大导致通信异常现象解析

    矩阵混音技术快速入门

    A&H矩阵混音技术快速入门Live_Matrix_MixingChinese
    发表于 03-26 14:12 0次下载

    零基础入门:如何在树莓派上编写和运行Python程序?

    在这篇文章中,我将为你简要介绍Python程序是什么、Python程序可以用来做什么,以及如何在RaspberryPi上编写和运行一个简单的Python程序。什么是Python程序?
    的头像 发表于 03-25 09:27 1524次阅读
    零基础入门:如何在树莓派上编写和运行<b class='flag-5'>Python</b>程序?

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1274次阅读

    KiCad 9 引入新的API机制

    “  在FOSDEM 2025的演讲中,核心开发者Jon Evans揭秘了KiCad 9的全新API系统,彻底重构插件生态,为开发者与用户带来更稳定、高效的体验。   ” 旧系统痛点:Python
    的头像 发表于 02-10 11:13 1947次阅读
    KiCad 9 引入新的API<b class='flag-5'>机制</b>

    Python绘图Matplotlib快速参考手册

     PYTHON
    发表于 02-07 14:04 0次下载

    Python Connector for InterBase连接解决方案

    适用于 InterBase 的 Python 连接器 Python Connector for InterBase 是一种可靠的连接解决方案,用于从 Python 应用程序访问 InterBase
    的头像 发表于 01-22 14:34 706次阅读

    使用Python实现xgboost教程

    使用Python实现XGBoost模型通常涉及以下几个步骤:数据准备、模型训练、模型评估和模型预测。以下是一个详细的教程,指导你如何在Python中使用XGBoost。 1. 安装XGBoost
    的头像 发表于 01-19 11:21 2214次阅读

    JCMsuite—单模光纤传播模式

    在本教程项目中,我们计算了带有掺杂二氧化硅芯的圆柱形光纤的基本传播模式。 磁芯具有相对介电常数ϵcore=2.113和直径dcore=8.2μm。包层具有相对介电常数ϵcladding
    发表于 01-09 08:57

    通过微透镜阵列的传播

    使用最新发布的版本中引入的一个新的MLA组件来设置和模拟这样的系统,允许对微透镜组件后面的近场以及远场和焦点区域的传输场进行彻底的研究。 微透镜阵列后光传播的研究 本用例研究微透镜阵列后传播的光。给出并
    发表于 01-08 08:49

    驻波与无线电波传播的关联

    无线电波是电磁波的一种,广泛应用于通信、广播和雷达等领域。在这些应用中,无线电波的传播特性至关重要。驻波作为一种特殊的波现象,对无线电波的传播有着深远的影响。 1. 驻波的基本概念 驻波是由两个振幅
    的头像 发表于 12-30 15:46 1432次阅读

    通过微透镜阵列的传播

    使用最新发布的版本中引入的一个新的MLA组件来设置和模拟这样的系统,允许对微透镜组件后面的近场以及远场和焦点区域的传输场进行彻底的研究。 微透镜阵列后光传播的研究 本用例研究微透镜阵列后传播的光。给出并
    发表于 12-11 11:32