0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于检测异常的胸部X光图像的深度学习系统

Tensorflowers 来源:TensorFlow 作者:TensorFlow 2021-09-30 11:16 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

医学成像中应用机器学习 (ML),为改善胸部 X 光 (CXR) 图像解读的可用性、延迟时间、准确率和一致性提供了绝佳的机会。事实上,我们已经开发了大量的算法来检测如肺癌、肺结核和气胸等特定疾病。然而,由于这些算法是被训练用于检测特定疾病,其在普遍临床环境下的实用性可能会受到限制,因为这种环境下可能会出现各种各样的异常情况。例如,我们无法通过气胸检测算法发现癌症结节,而肺结核检测算法可能也无法识别肺炎特有的症状。由于初始分诊步骤是确定 CXR 是否包含相关的异常,如果能使用一种通用算法,以识别包含任何异常情况的 X 光图像,即可大大简化工作流。然而,由于在 CXR 上出现的异常情况种类繁多,开发能识别所有异常情况的分类算法可谓充满挑战。

我们发表于《科学报告》的“深度学习用于区分正常和异常胸部放射照片,并泛化到两种未知疾病:结核病与新冠肺炎 (Deep Learning for Distinguishing Normal versus Abnormal Chest Radiographs and Generalization to Two Unseen Diseases Tuberculosis and COVID-19)”一文中提出了一个模型,该模型可以在多个去识别化的数据集和环境中区分正常和异常的 CXR。我们发现,该模型在检测一般的异常情况以及结核病和新冠肺炎等未知病例方面表现良好。我们还针对公开可用的 ChestX-ray14 数据集发布了本研究中用到的测试集的放射科医生标签集[1]。

深度学习用于区分正常和异常胸部放射照片,并泛化到两种未知疾病:结核病与新冠肺炎

https://www.nature.com/articles/s41598-021-93967-2

用于检测异常的胸部 X 光图像的深度学习系统

我们使用基于 EfficientNet-B7 架构的深度学习系统,且在 ImageNet 上进行了预训练。我们使用来自印度阿波罗医院的 20 多万张去识别化 CXR 来训练该模型。通过使用基于正则表达式的自然语言处理方法,我们在相关的放射学报告中为每张 CXR 分配“正常”或“异常”标签。

EfficientNet-B7

https://github.com/tensorflow/tpu/tree/r1.15/models/official/efficientnet

ImageNet

https://arxiv.google.cn/abs/1409.0575

为评估该系统在新问诊者群体中的普及程度,我们在两个由大量异常情况组成的数据集中比较了其性能:阿波罗医院数据集的测试分块 (DS-1),以及公开可用的 ChestX-ray14 (CXR-14)。一群获美国职业认证的放射科医生为此项目对两个测试集的标签进行了注释。该系统在 DS-1 和 CXR-14 上的接收者操作特征曲线下面积 (Receiver operating characteristic) (AUROC) 分别达到了 0.87 和 0.94(数字越高越好)。

尽管对 DS-1 和 CXR-14 的评估中包含多种异常情况,不过出现的用例可能是在全新或未知的环境(未知疾病)中利用这样的异常检测算法。为评估该系统对新问诊者群体和训练集中未知疾病的通用性,我们使用了来自三个国家(地区)的四个去识别化数据集,包括两个公开可用的结核病数据集和两个来自 Northwestern Medicine 的新冠肺炎数据集。该系统在检测结核病时曲线下面积达到了 0.95 至 0.97;在检测新冠肺炎时曲线下面积达到了 0.65 至 0.68。由于对这些疾病呈现阴性的 CXR 仍可能包含其他相关异常情况,我们进一步对该系统检测异常(而不是检测疾病为阳性或阴性)的能力进行评估,发现结核病数据集的曲线下面积为 0.91 至 0.93,新冠肺炎数据集的曲线下面积为 0.86。

检测新冠肺炎的表现大幅下降是因为许多被系统标记为“阳性”的异常病例对于新冠肺炎来说呈现阴性,但仍需要注意,其中可能包含异常 CXR 结果。这进一步突显了异常检测算法的作用,尤其是在特定疾病模型可用的情况下。

此外需要注意的是,泛化到未知疾病(即结核病和新冠肺炎)和泛化到未知 CXR 结果(例如胸腔积液 、实变 /浸润)之间存在差别。在此项研究中,我们证明了该系统在检测未知疾病方面的通用性,但对于未知 CXR 结果则不具有通用性。

临床方面的潜在优势

为了解深度学习模型在改善临床工作流方面的潜在实用性,我们模拟了在病例优先级方面该模型的应用,即“加急”异常病例,并将其放置在正常病例之前。在上述模拟操作中,系统将异常病例的周转时间减少了 28%。通过这种设置,我们可以重新确定优先级,将复杂的异常病例转交给心胸专科放射科医生,从而对可能需要紧急决策的病例进行快速分类,并有机会通过简化审查的方式对阴性 CXR 进行批量审查。

此外,我们发现该系统可以作为预训练模型来优化胸部 X 光片的其他 ML 算法,尤其是在数据有限的情况下。例如,我们在最近的研究中使用了正常/异常分类算法,以根据胸部 X 光片检测肺结核。在专业放射科医生或分子检测技术等资源匮乏的地区,异常情况和结核病的检测算法可以在初期诊断中发挥关键作用。

分享改进后的参考标准标签

要发挥 ML 的潜力,以在世界范围内辅助解读胸部 X 光片,我们还有很多工作要做。具体来说,在去识别化的数据上获得高质量标签可能是在医疗领域开发和评估 ML 算法的一个重要障碍。为了加速努力进程,我们通过发布在本研究中用到的标签,对之前发布的标签进行扩展,并将其用于公开可用的 ChestX-ray14 数据集。我们期待着社区在该领域开展未来的机器学习项目。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136233
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123904

原文标题:深度学习助力异常胸部 X 光片检测

文章出处:【微信号:tensorflowers,微信公众号:Tensorflowers】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电压放大器在全导波场图像目标识别的损伤检测实验的应用

    图像目标识别的智能损伤检测方法,通过结合超声导波检测技术与深度学习算法,系统探究了损伤引起的波场
    的头像 发表于 12-02 11:37 67次阅读
    电压放大器在全导波场<b class='flag-5'>图像</b>目标识别的损伤<b class='flag-5'>检测</b>实验的应用

    如何深度学习机器视觉的应用场景

    检测应用 微细缺陷识别:检测肉眼难以发现的微小缺陷和异常 纹理分析:对材料表面纹理进行智能分析和缺陷识别 3D表面重建:通过深度学习进行高精
    的头像 发表于 11-27 10:19 53次阅读

    确保X设备检测的有效性和准确性的关键技巧

    在工业和安全领域,X设备检测已成为不可或缺的重要环节。然而,许多用户常常面临检测效果不理想、准确性不足的问题,影响生产效率和安全保障。如何确保X
    的头像 发表于 11-18 11:27 97次阅读

    地铁隧道病害智能巡检系统——机器视觉技术的深度应用

    地铁隧道渗漏水病害检测智能系统通过分辨率视觉模组对地铁隧道进行高精度成像,并通过国际先进的深度学习算法能够在采集的图像中自动识别出渗漏水区域
    的头像 发表于 08-29 15:50 337次阅读
    地铁隧道病害智能巡检<b class='flag-5'>系统</b>——机器视觉技术的<b class='flag-5'>深度</b>应用

    IGBT 样品异常检测案例解析

    通过利用Thermal EMMI(热红外显微镜)去检测IGBT 样品异常
    的头像 发表于 08-15 09:17 1591次阅读
    IGBT 样品<b class='flag-5'>异常</b><b class='flag-5'>检测</b>案例解析

    基于eBPF的Kubernetes网络异常检测系统

    作为一名在云原生领域深耕多年的运维工程师,我见过太多因为网络问题导致的生产事故。传统的监控手段往往是事后诸葛亮,当你发现问题时,用户已经在抱怨了。今天,我将分享如何利用 eBPF 这一革命性技术,构建一套能够实时检测 Kubernetes 网络异常
    的头像 发表于 07-24 14:09 500次阅读

    机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统

    本文转自:DeepHubIMBA无监督异常检测作为机器学习领域的重要分支,专门用于在缺乏标记数据的环境中识别异常事件。本文深入探讨
    的头像 发表于 06-24 11:40 1197次阅读
    机器<b class='flag-5'>学习</b><b class='flag-5'>异常</b><b class='flag-5'>检测</b>实战:用Isolation Forest快速构建无标签<b class='flag-5'>异常</b><b class='flag-5'>检测</b><b class='flag-5'>系统</b>

    VirtualLab:用于微结构晶片检测的光学系统

    摘要 在半导体工业中,晶片检测系统被用来检测晶片上的缺陷并找到它们的位置。为了确保微结构所需的图像分辨率,检测
    发表于 05-28 08:45

    提高IT运维效率,深度解读京东云AIOps落地实践(异常检测篇)

    基于深度学习对运维时序指标进行异常检测,快速发现线上业务问题 时间序列的异常检测是实际应用中的一
    的头像 发表于 05-22 16:38 804次阅读
    提高IT运维效率,<b class='flag-5'>深度</b>解读京东云AIOps落地实践(<b class='flag-5'>异常</b><b class='flag-5'>检测</b>篇)

    经栈桥整流后耦输出异常,是什么原因?

    去掉栈桥,再次检测耦输出,波形显示正常(周期20ms,占空比50%的方波) 请问大佬,经栈桥整流后耦输出异常,是否是电路设计有误?还是其它原因,求解答!
    发表于 05-08 15:21

    基于高光谱深度特征的油菜叶片锌含量检测

    为了实现油菜叶片锌含量的快速无损检测,该研究采用一种基于高光谱成像技术结合深度迁移学习算法的高精度检测方法,通过无土栽培的方式,利用高光谱成像设备采集油菜叶片样本高光谱
    的头像 发表于 02-24 18:03 630次阅读
    基于高光谱<b class='flag-5'>深度</b>特征的油菜叶片锌含量<b class='flag-5'>检测</b>

    VirtualLab Fusion应用:用于导耦合的倾斜光栅的分析

    [使用案例] -通过使用界面配置光栅结构[用例] -通过使用接口配置光栅结构[用例] -分析耦合光栅的衍射效率 -用于评估导耦合光栅的定制检测器[用例] -通过对特定参数的扫描来检查效率 -利用参数运行[用例] -利用参数运行
    发表于 02-12 08:58

    采用华为云 Flexus 云服务器 X 实例部署 YOLOv3 算法完成目标检测

    一、前言 1.1 开发需求 这篇文章讲解: 采用华为云最新推出的 Flexus 云服务器 X 实例部署 YOLOv3 算法,完成图像分析、目标检测。 随着计算机视觉技术的飞速发展,深度
    的头像 发表于 01-02 12:00 1026次阅读
    采用华为云 Flexus 云服务器 <b class='flag-5'>X</b> 实例部署 YOLOv3 算法完成目标<b class='flag-5'>检测</b>

    Flexus X 实例 ultralytics 模型 yolov10 深度学习 AI 部署与应用

    前言: ���深度学习新纪元,828 B2B 企业节 Flexus X 实例特惠!想要高效训练 YOLOv10 模型,实现精准图像识别?Flexus
    的头像 发表于 12-24 12:24 1295次阅读
    Flexus <b class='flag-5'>X</b> 实例 ultralytics 模型 yolov10 <b class='flag-5'>深度</b><b class='flag-5'>学习</b> AI 部署与应用

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    1、简介 人工智能图像识别是人工智能领域的一个重要分支,它涉及计算机视觉、深度学习、机器学习等多个领域的知识和技术。图像识别主要是处理具有一
    发表于 12-19 14:33