0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用Python和PyTorch处理面向对象的数据集

YCqV_FPGA_EETre 来源:XILINX开发者社区 作者:赛灵思开发者 2021-08-25 15:30 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本篇是利用 Python 和 PyTorch 处理面向对象的数据集系列博客的第 2 篇。

如需阅读第 1 篇:原始数据和数据集,请参阅此处。

我们在第 1 部分中已定义 MyDataset 类,现在,让我们来例化 MyDataset 对象

此可迭代对象是与原始数据交互的接口,在整个训练过程中都有巨大作用。

第 2 部分:创建数据集对象

■输入 [9]:

mydataset = MyDataset(isValSet_bool = None, raw_data_path = raw_data_path, norm = False, resize = True, newsize = (64, 64))

以下是该对象的一些使用示例:

■输入 [10]:

# 对象操作示例。

# 此操作用于调用 method __getitem__ 并从第 6 个样本获取标签

mydataset[6][1]

■输出 [10]:

0

■输入 [11]:

# 此操作用于在类声明后打印注释

MyDataset.__doc__

■输出 [11]:

‘Interface class to raw data, providing the total number of samples in the dataset and a preprocessed item’

■输入 [12]:

# 此操作用于调用 method __len__

len(mydataset)

■输出 [12]:

49100

■输入 [13]:

# 此操作用于触发 method __str__

print(mydataset)

原始数据路径为 。/raw_data/data_images/《raw samples》

可迭代对象的重要性

训练期间,将向模型提供多批次样本。可迭代的 mydataset 是获得高级轻量代码的关键。

以下提供了可迭代对象的 2 个使用示例。

示例 1:

我们可以直接获取第 3 个样本张量:

■输入 [14]:

mydataset.__getitem__(3)[0].shape

■输出 [14]:

torch.Size([3, 64, 64])

与以下操作作用相同

■输入 [15]:

mydataset[3][0].shape

■输出 [15]:

torch.Size([3, 64, 64])

示例 2:

我们可以对文件夹中的图像进行解析,并移除黑白图像:

■输入 [ ]:

# 数据集访问示例:创建 1 个包含标签的新文件,移除黑白图像

if os.path.exists(raw_data_path + ‘/’+ “labels_new.txt”):

os.remove(raw_data_path + ‘/’+ “labels_new.txt”)

with open(raw_data_path + ‘/’+ “labels_new.txt”, “a”) as myfile:

for item, info in mydataset:

if item != None:

if item.shape[0]==1:

# os.remove(raw_data_path + ‘/’ + info.SampleName)

print(‘C = {}; H = {}; W = {}; info = {}’.format(item.shape[0], item.shape[1], item.shape[2], info))

else:

#print(info.SampleName + ‘ ’ + str(info.SampleLabel))

myfile.write(info.SampleName + ‘ ’ + str(info.SampleLabel) + ‘ ’)

■输入 [ ]:

# 查找具有非期望格式的样本

with open(raw_data_path + ‘/’+ “labels.txt”, “a”) as myfile:

for item, info in mydataset:

if item != None:

if item.shape[0]!=3:

# os.remove(raw_data_path + ‘/’ + info.SampleName)

print(‘C = {}; H = {}; W = {}; info = {}’.format(item.shape[0], item.shape[1], item.shape[2], info))

修改标签文件后,请务必更新缓存:

■输入 [ ]:

if os.path.exists(raw_data_path + ‘/’+ “labels_new.txt”):

os.rename(raw_data_path + ‘/’+ “labels.txt”, raw_data_path + ‘/’+ “labels_orig.txt”)

os.rename(raw_data_path + ‘/’+ “labels_new.txt”, raw_data_path + ‘/’+ “labels.txt”)

@functools.lru_cache(1)

def getSampleInfoList(raw_data_path):

sample_list = []

with open(str(raw_data_path) + ‘/labels.txt’, “r”) as f:

reader = csv.reader(f, delimiter = ‘ ’)

for i, row in enumerate(reader):

imgname = row[0]

label = int(row[1])

sample_list.append(DataInfoTuple(imgname, label))

sample_list.sort(reverse=False, key=myFunc)

return sample_list

del mydataset

mydataset = MyDataset(isValSet_bool = None, raw_data_path = ‘。./。./raw_data/data_images’, norm = False)

len(mydataset)

您可通过以下链接阅读了解有关 PyTorch 中的可迭代数据库的更多信息:

https://pytorch.org/docs/stable/data.html

归一化

应对所有样本张量计算平均值和标准差。

如果数据集较小,可以尝试在内存中对其进行直接操作:使用 torch.stack 即可创建 1 个包含所有样本张量的栈。

可迭代对象 mydataset 支持简洁精美的代码。

使用“view”即可保留 R、G 和 B 这 3 个通道,并将其余所有维度合并为 1 个维度。

使用“mean”即可计算维度 1 的每个通道的平均值。

请参阅附件中有关 dim 使用的说明。

■输入 [16]:

imgs = torch.stack([img_t for img_t, _ in mydataset], dim = 3)

■输入 [17]:

#im_mean = imgs.view(3, -1).mean(dim=1).tolist()

im_mean = imgs.view(3, -1).mean(dim=1)

im_mean

■输出 [17]:

tensor([0.4735, 0.4502, 0.4002])

■输入 [18]:

im_std = imgs.view(3, -1).std(dim=1).tolist()

im_std

■输出 [18]:

[0.28131285309791565, 0.27447444200515747, 0.2874436378479004]

■输入 [19]:

normalize = transforms.Normalize(mean=[0.4735, 0.4502, 0.4002], std=[0.28131, 0.27447, 0.28744])

# free memory

del imgs

下面,我们将再次构建数据集对象,但这次将对此对象进行归一化:

■输入 [21]:

mydataset = MyDataset(isValSet_bool = None, raw_data_path = raw_data_path, norm = True, resize = True, newsize = (64, 64))

由于采用了归一化,因此张量值被转换至范围 0..1 之内,并进行剪切操作。

■输入 [22]:

original = Image.open(‘。./。./raw_data/data_images/img_00009111.JPEG’)

fig, axs = plt.subplots(1, 2, figsize=(10, 3))

axs[0].set_title(‘clipped tensor’)

axs[0].imshow(mydataset[5][0].permute(1,2,0))

axs[1].set_title(‘original PIL image’)

axs[1].imshow(original)

plt.show()

将输入数据剪切到含 RGB 数据的 imshow 的有效范围内,以 [0..1] 表示浮点值,或者以 [0..255] 表示整数值。

使用 torchvision.transforms

进行预处理

现在,我们已经创建了自己的变换函数或对象(原本用作为加速学习曲线的练习),我建议使用 Torch 模块 torchvision.transforms:

“此模块定义了一组可组合式类函数对象,这些对象可作为实参传递到数据集(如 torchvision.CIFAR10),并在加载数据后 __getitem__ 返回数据之前,对数据执行变换”。

以下列出了可能的变换:

■输入 [23]:

from torchvision import transforms

dir(transforms)

■输出 [23]:

[‘CenterCrop’,

‘ColorJitter’,

‘Compose’,

‘FiveCrop’,

‘Grayscale’,

‘Lambda’,

LinearTransformation’,

‘Normalize’,

‘Pad’,

‘RandomAffine’,

‘RandomApply’,

‘RandomChoice’,

‘RandomCrop’,

‘RandomErasing’,

‘RandomGrayscale’,

‘RandomHorizontalFlip’,

‘RandomOrder’,

‘RandomPerspective’,

‘RandomResizedCrop’,

‘RandomRotation’,

‘RandomSizedCrop’,

‘RandomVerticalFlip’,

‘Resize’,

‘Scale’,

‘TenCrop’,

‘ToPILImage’,

‘ToTensor’,

‘__builtins__’,

‘__cached__’,

‘__doc__’,

‘__file__’,

‘__loader__’,

‘__name__’,

‘__package__’,

‘__path__’,

‘__spec__’,

‘functional’,

‘transforms’]

在此示例中,我们使用变换来执行了以下操作:

1) ToTensor - 从 PIL 图像转换为张量,并将输出格式定义为 CxHxW

2) Normalize - 将张量归一化

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7314

    浏览量

    93968
  • python
    +关注

    关注

    57

    文章

    4857

    浏览量

    89571
  • pytorch
    +关注

    关注

    2

    文章

    813

    浏览量

    14696

原文标题:开发者分享 | 利用 Python 和 PyTorch 处理面向对象的数据集 - 2:创建数据集对象

文章出处:【微信号:FPGA-EETrend,微信公众号:FPGA开发圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    PYQT 应用程序框架及开发工具

    大家好,本团队此次分享的内容为开发过程中使用到的PYQT 应用程序框架及开发工具。 pYqt 是一个多平台的 python 图形用户界面应用程序框架,由于其面向对象、 易扩展(可实现组件编程等
    发表于 10-29 07:15

    使用AICube导入数据点创建后提示数据不合法怎么处理

    重现步骤 data目录下 labels.txt只有英文 **错误日志** 但是使用示例的数据可以完成训练并部署
    发表于 06-24 06:07

    数据下载失败的原因?

    数据下载失败什么原因太大了吗,小的可以下载,想把大的下载去本地训练报错网络错误 大的数据多大?数据量有多少?
    发表于 06-18 07:04

    python入门圣经-高清电子书(建议下载)

    和Pygal 等强大的Python 库和工具介绍,以及列表、字典、if 语句、类、文件与异常、代码测试等内容; 第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D 游戏开发如何利用
    发表于 04-10 16:53

    请问NanoEdge AI数据该如何构建?

    我想用NanoEdge来识别异常的声音,但我目前没有办法生成模型,我感觉可能是数据的问题,请问我该怎么构建数据?或者生成模型失败还会有哪些原因?
    发表于 03-10 08:20

    使用Yolo-v3-TF运行OpenVINO™对象检测Python演示时的结果不准确的原因?

    的模型与对象检测 Python* Demo 配合使用时无法检测对象python3 open_model_zoo/demos/object_detection_demo/
    发表于 03-06 06:31

    无法在Windows Subsystem for Linux 2上使用对象检测Python演示运行YoloV4模型?

    在 WSL2 上运行对象检测 python 演示。 使用 CPU 运行 object_detection_demo.py 时遇到错误: OpenCV: FFMPEG: tag
    发表于 03-05 08:43

    对象存储是什么结构类型?

    对象存储属于非结构化数据存储架构,采用扁平化命名空间结构。其核心通过唯一标识符(ObjectID)定位数据对象,突破传统文件系统的层级目录限制,形成"桶-
    的头像 发表于 02-10 11:14 691次阅读

    操作指南:pytorch云服务器怎么设置?

    设置PyTorch云服务器需选择云平台,创建合适的GPU实例,安装操作系统、Python及Anaconda,创建虚拟环境,根据CUDA版本安装PyTorch,配置环境变量,最后验证安装。过程中需考虑
    的头像 发表于 02-08 10:33 605次阅读

    Python Connector for InterBase连接解决方案

    ,以对存储的数据执行创建、读取、更新和删除操作。该解决方案完全符合 Python DB API 2.0 规范,并作为 Windows、macOS 和 Linux 的 wheel 包分发。 特征 高性能
    的头像 发表于 01-22 14:34 705次阅读

    适用于Oracle的Python连接器:可访问托管以及非托管的数据

    适用于 Oracle 的 Python 连接器 适用于 Oracle 的 Python 连接器是一种可靠的连接解决方案,用于从 Python 应用程序访问 Oracle 数据库服务器和
    的头像 发表于 01-14 10:30 739次阅读

    HarmonyOS Next 应用元服务开发-分布式数据对象迁移数据文件资产迁移

    === AbilityConstant.LaunchReason.CONTINUATION) { // ... // 调用封装好的分布式数据对象处理函数 this.handleDistributedData(want
    发表于 12-24 10:11

    HarmonyOS Next 应用元服务开发-分布式数据对象迁移数据权限与基础数据

    === AbilityConstant.LaunchReason.CONTINUATION) { // ... // 调用封装好的分布式数据对象处理函数 this.handleDistributedData(want
    发表于 12-24 09:40

    利用Arm Kleidi技术实现PyTorch优化

    PyTorch 是一个广泛应用的开源机器学习 (ML) 库。近年来,Arm 与合作伙伴通力协作,持续改进 PyTorch 的推理性能。本文将详细介绍如何利用 Arm Kleidi 技术提升 Arm
    的头像 发表于 12-23 09:19 1617次阅读
    <b class='flag-5'>利用</b>Arm Kleidi技术实现<b class='flag-5'>PyTorch</b>优化