0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高速信号处理时片间信号传输的静态时许分析

FPGA之家 来源:CSDN博客 作者:多喝hot水 2021-06-18 16:22 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

之前做的一个超宽带非均匀采样系统中遇到的一些问题,虽然本文所述方法并未实际用到并解决遇到的问题,但也是给了很大的启发和参考,所以今天专门整理出来作为备忘。

在高速信号处理时的时许约束不仅仅包括片内时序约束,要想实现高速信号的有效传输就必须进行片外静态时序分析。本文作为在高速信号处理时信号输入输出的理论参考,之所以说作为理论参考是因为由于高速信号处理,具体的一些参数无法实际计算出来,只能在理论参考的方向进行不断尝试。

对于建立时间和保持时间本文就不再过多叙述,可参考【FPGA】几种时序问题的常见解决方法-------3,可以说在数字高速信号处理中最基本的概念就是建立时间和保持时间,而我们要做的就是解决亚稳态问题和传输稳定问题。

下面就IO口时序约束分析进行原理性的讨论,首先在分析时要考虑的时序范围是信号的两端(FPGA和另一端器件)、信号传输路径,三部分,这三部分中信号传输路径可以包括逻辑器件或者单纯外部信号线路。先将FPGA的建立时间和保持时间按照触发器的定义方式进行一下定义:

(1) Tdin为从FPGA的IO口到FPGA内部寄存器输入端的延时;

(2) Tclk为从FPGA的IO口到FPGA内部寄存器时钟端的延时;

(3) Tus/Th为FPGA内部寄存器的建立时间和保持时间;

(4) Tco为FPGA内部寄存器传输时间;

(5) Tout为从FPGA寄存器输出到IO口输出的延时;

FPGA的建立时间和保持时间可定义为:

(1) FPGA建立时间:FTsu = Tdin + Tsu – Tclk;

(2) FPGA保持时间:FTh = Th + Tclk - Tdin;

(3) FPGA数据传输时间:FTco = Tclk + Tco + Tout;

-----------------------------------------------进行输入的最大延迟和最小延迟-----------------------------------------------

有了上述的重新定义的参数,就可以将FPGA和器件之间的时序分析按照内部分析的模式来进行分析了,对FPGA的IO口进行输入最大最小延时约束是为了让FPGA设计工具能够尽可能的优化从输入端口到第一级寄存器之间的路径延迟,使其能够保证系统时钟可靠的采到从外部芯片到FPGA的信号。

输入延时即为从外部器件发出数据到FPGA输入端口的延时时间。其中包括时钟源到FPGA延时和到外部器件延时之差、经过外部器件的数据发送Tco,再加上PCB板上的走线延时。如图1.4所示,为外部器件和FPGA接口时序。

750e15f6-cf77-11eb-9e57-12bb97331649.png

1,最大输入延时

最大输入延时(input delay max)为当从数据发送时钟沿(lanuch edge)经过最大外部器件时钟偏斜(Tclk1),最大的器件数据输出延时(Tco),再加上最大的PCB走线延时(Tpcb),减去最小的FPGA时钟偏移(FTsu)的情况下还能保证时序满足的延时。这样才能保证FPGA的建立时间,准确采集到本次数据值,即为setup slack必须为正,计算公式如下式所示:

Setup slack =(Tclk + Tclk2(min))–(Tclk1(max) +Tco(max) +Tpcb(max) +FTsu)≥0

推出如下公式:

Tclk1(max) + Tco(max) + Tpcb(max) –Tclk2(min) ≤ Tclk - FTsu

PS:上式中max和min是为了保证传输质量所必需的条件,如果不加max和min就会有可能导致系统有些情况不满足上式,从而导致信号传输产生错误。Tclk为同步时钟的周期。

可以得出最大输入时延表达式为上述不等式的左半部分而其最大值为上述不等式的右半部份,即:

最大输入延时(input delay max) =Tclk - FTsu

归根结底就是输入信号的各部分时延必须满足Tclk1(max) + Tco(max) + Tpcb(max) –Tclk2(min) ≤ Tclk - FTsu这个公式。但是式中Tco(max)可以通过对片外器件延时实现手动调节,Tclk2(min)也可以通过时许约束(offset)或者FPGA内部DCM实现相移等操作。最大最小输入延时指的是数据的最大输入延时,可通过始终约束其最大输入延时来保证时序正确。

2,最小输入延时

最小输入延时(input delay min)为当从数据发送时钟沿(lanuch edge)经过最小外部器件时钟偏斜(Tclk1),最小器件数据输出延时(Tco),再加上最小PCB走线延时(Tpcb),此时的时间总延时值一定要大于FPGA的最大时钟延时和建立时间之和,这样才能不破坏FPGA上一次数据的保持时间,即为hold slack必须为正,计算公式如下式所示:

Hold slack = (Tclk1(min) + Tco(min) + Tpcb(min))–(FTh + Tclk2(max))≥ 0

推出如下公式:

Tclk1(min) + Tco(min) + Tpcb(min) – Tclk2(max) ≥ FTh

可以得出最大输入时延表达式为上述不等式的左半部分而其最大值为上述不等式的右半部份,即:

最小输入延时(input delay min) = FTh

归根结底就是输入信号的各部分时延必须满足Tclk1(min) + Tco(min) + Tpcb(min) – Tclk2(max) ≥ FTh这个公式。但是式中Tco(max)可以通过对片外器件延时实现手动调节,Tclk2(min)也可以通过时许约束(offset)或者FPGA内部DCM实现相移等操作。外部器件输出数据通过PCB板到达FPGA端口的最大值和最小值Tpcb,PCB延时经验值为600mil/ns,1mm = 39.37mil。

-----------------------------------------------------------------------------------------------------

本文所述为高速信号处理时,片间信号传输的静态时许分析,中间的很多参数需要查看数据手册,另外对于FPGA输出的静态时许分析大家可以参考FPGA输入的静态时序分析进行对照分析,在此就不再赘述。

原文标题:【FPGA】高速信号处理中的片外信号输入输出静态时序分析

文章出处:【微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1656

    文章

    22288

    浏览量

    630379
  • 信号
    +关注

    关注

    11

    文章

    2902

    浏览量

    79684

原文标题:【FPGA】高速信号处理中的片外信号输入输出静态时序分析

文章出处:【微信号:zhuyandz,微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    信维高频MLCC电容,助力高速信号传输

    信维高频MLCC电容通过低介质损耗、低等效串联电阻(ESR)、低寄生电感(ESL)、宽频带特性、高容量密度以及耐高温抗机械冲击等优势,显著提升高速信号传输的效率与稳定性,具体分析如下:
    的头像 发表于 12-09 15:29 104次阅读
    信维高频MLCC电容,助力<b class='flag-5'>高速</b><b class='flag-5'>信号</b><b class='flag-5'>传输</b>

    高速信号传输为什么要用极细同轴线束?

    高速信号传输之所以选择极细同轴线束,核心原因在于它兼顾了信号完整性、抗干扰能力、柔性布线和高速特性。它既能满足现有的
    的头像 发表于 08-22 18:19 1279次阅读
    <b class='flag-5'>高速</b><b class='flag-5'>信号</b><b class='flag-5'>传输</b>为什么要用极细同轴线束?

    如何用普源DHO924示波器构建高速串行信号分析系统

    高速数字通信领域,如USB、PCIe、以太网等协议的测试与调试中,准确分析串行信号的时序、抖动、眼图等参数是确保系统稳定性和数据传输可靠性的关键。普源DHO924示波器凭借其200M
    的头像 发表于 06-23 14:15 565次阅读
    如何用普源DHO924示波器构建<b class='flag-5'>高速</b>串行<b class='flag-5'>信号</b><b class='flag-5'>分析</b>系统

    光纤可以传输控制信号

    光纤可以传输控制信号,以下从原理、应用场景、优势、注意事项等方面为你详细分析: 原理 光信号转换:控制信号通常是电
    的头像 发表于 05-28 09:27 747次阅读

    捷多邦多层板,高速信号传输的理想之选

    在数字化浪潮中,高速信号传输已成为众多领域的关键需求。从 5G 通信基站的高效数据交互,到高性能计算机的快速运算,再到智能汽车的精准控制,高速信号
    的头像 发表于 05-07 18:09 444次阅读

    泰克示波器MSO64如何应对高速信号分析

    在5G通信、高速数字接口、新能源汽车等前沿领域,信号传输速度不断突破极限,这对测试设备的性能提出了前所未有的挑战。泰克示波器MSO64作为一款兼具高性能与灵活性的混合信号示波器,凭借其
    的头像 发表于 04-16 15:46 533次阅读
    泰克示波器MSO64如何应对<b class='flag-5'>高速</b><b class='flag-5'>信号</b><b class='flag-5'>分析</b>

    高速信号链路损耗分析

    随着集成电路及其相关应用的发展,信号速率越来越高,大概每3~4年高速信号的速率就会翻一番,随着信号速率的上升,损耗已经成为影响信号质量的最主
    的头像 发表于 03-05 11:04 1491次阅读
    <b class='flag-5'>高速</b><b class='flag-5'>信号</b>链路损耗<b class='flag-5'>分析</b>

    高速信号如何判定?常见的高速信号有哪些?

    随着信息技术的飞速发展,高速信号在互联网传输、计算机内部通信、移动通信及卫星通信等领域中广泛应用。那么,如何判定一个信号是否为高速
    的头像 发表于 02-11 15:14 1301次阅读
    <b class='flag-5'>高速</b><b class='flag-5'>信号</b>如何判定?常见的<b class='flag-5'>高速</b><b class='flag-5'>信号</b>有哪些?

    调制在音频信号处理中的应用

    调制在音频信号处理中扮演着至关重要的角色。以下是调制在音频信号处理中的具体应用及其作用: 一、调制的基本原理 调制是将一种信号(称为基带
    的头像 发表于 01-21 09:36 1429次阅读

    调制对信号传输质量的影响

    在现代通信系统中,调制技术是实现信息传输的关键环节。调制过程涉及将原始信息信号(基带信号)转换成适合在特定信道上传输的形式。这一过程对信号
    的头像 发表于 01-21 09:25 1629次阅读

    调制信号的性能分析

    调制信号的性能分析涉及多个方面,以下是对调制信号性能分析的介绍: 一、调制信号的基础 调制是将信息编码到载波
    的头像 发表于 01-21 09:23 1697次阅读

    深度解析:PCB高速信号传输中的阻抗匹配与信号完整性

    一站式PCBA智造厂家今天为大家PCB设计中什么是高速信号?PCB设计中为什么高频会出现信号失真。在电子设备制造中,高速信号
    的头像 发表于 12-30 09:41 1188次阅读

    差分信号线的选择与处理

    差分信号线的选择与处理对于确保高速通信系统的稳定性和可靠性至关重要。以下是对差分信号线选择与处理的介绍: 一、差分
    的头像 发表于 12-25 18:05 2255次阅读

    差分信号传输中的噪声抑制

    高速通信和电子系统中,信号的完整性对于系统性能至关重要。差分信号传输作为一种有效的信号传输方式
    的头像 发表于 12-25 17:21 1586次阅读

    听懂什么是信号完整性

    2024年12月20日14:00-16:00中星联华科技将举办“高速信号完整性分析与测试”-“码”上行动系列线上讲堂线上讲堂。本期会议我们将为大家介绍高速串行总线
    的头像 发表于 12-15 23:33 1046次阅读
    听懂什么是<b class='flag-5'>信号</b>完整性