0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种基于超表面-石墨烯异质结构的太赫兹微流控器件

MEMS 来源:广东省农业科学院 作者:广东省农业科学院 2021-06-09 08:59 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

微生物污染已成为国内外突出的食品安全问题,而由此引发的食源性疾病严重危害了人类的健康。我国每年的官方通报中,细菌性食物中毒的报告数和波及人数最多。因此,开展食源性致病菌的快速、准确监测具有十分重要的意义。

近期,广东省农业科学院农业质量标准与监测技术研究所(简称:质标所)与浙江大学合作研发了一种基于超表面-石墨烯异质结构的太赫兹微流控器件,实现了对大肠杆菌DNA的快速、准确、免标检测,相关成果在国际顶尖学术期刊Biosensors & Bioelectronics(中科院一区,IF=10.257)上在线发表,题目为Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,质标所王陈博士为论文共同第一作者。

9760a048-c7bf-11eb-9e57-12bb97331649.jpg

该研究针对大肠杆菌快速灵敏检测的实际需求和现阶段太赫兹传感技术实现极性溶液中生化分子灵敏检测过程中的共性关键问题,首次提出将金属孔阵列结构与单层石墨烯结合并集成至太赫兹微流控器件中,基于对所构建器件的传感机理的全面探究,建立了生物-电-光信号增益转化的传感方法,实现了对大肠杆菌(O157:H7)DNA序列的快速、准确、免标检测。该研究成果为进行食源性致病菌的快速筛查提供了新的方法,也为推动解决太赫兹传感应用过程中灵敏度低、极性基质干扰严重的共性问题提供了新的思路,具有较好的学术和应用价值。

9772ac52-c7bf-11eb-9e57-12bb97331649.jpg

977bbc66-c7bf-11eb-9e57-12bb97331649.jpg

97885476-c7bf-11eb-9e57-12bb97331649.jpg

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 石墨烯
    +关注

    关注

    54

    文章

    1612

    浏览量

    84591
  • 微流控
    +关注

    关注

    16

    文章

    587

    浏览量

    20543
  • 太赫兹
    +关注

    关注

    11

    文章

    359

    浏览量

    30541

原文标题:新型太赫兹微流控器件实现大肠杆菌DNA序列免标检测

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电控可调表面实现实时赫兹全息成像

    赫兹波段在高速无线通信、高级加密和医疗成像等下代技术中具有巨大应用潜力。然而由于赫兹波与大多数天然材料相互作用较弱,对其调控长期面临技
    的头像 发表于 10-24 07:54 127次阅读
    电控可调<b class='flag-5'>超</b><b class='flag-5'>表面</b>实现实时<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>全息成像

    量子霍尔效应(QHE)的界面耦合诱导与双栅调控:石墨-CrOCl异质结的机制研究

    机制仍存在诸多未解之谜。本研究通过构建石墨与反铁磁绝缘体CrOCl的异质结,并基于ECOPIA霍尔效应测试仪HMS-3000的高精度电学表征系统,首次观测到一种
    的头像 发表于 09-29 13:46 432次阅读
    量子霍尔效应(QHE)的界面耦合诱导与双栅调控:<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>-CrOCl<b class='flag-5'>异质</b>结的机制研究

    中国科大实现波导上高功率赫兹表面波的高效激发

    飞秒激光辐照金属丝波导,通过电子发射过程激发赫兹表面波 近日,我校核科学技术学院胡广月团队在高功率赫兹
    的头像 发表于 09-01 09:15 394次阅读
    中国科大实现波导上高功率<b class='flag-5'>太</b><b class='flag-5'>赫兹</b><b class='flag-5'>表面</b>波的高效激发

    西安光机所在赫兹表面逆向设计领域取得新进展

    高精度表面逆向设计方法及透射/反射双功能的宽频段聚焦涡旋光产生器示意图 近日,中国科学院西安光机所快光科学与技术全国重点实验室在赫兹
    的头像 发表于 04-22 06:12 636次阅读
    西安光机所在<b class='flag-5'>太</b><b class='flag-5'>赫兹</b><b class='flag-5'>超</b><b class='flag-5'>表面</b>逆向设计领域取得新进展

    EastWave应用:光场与石墨和特异介质相互作用的研究

    图 1-1模型示意图 本案例使用“自动计算透反率模式”研究石墨和特异介质的相互作用,分析透反率在有无石墨存在情况下的变化。光源处于近红外波段。 模型为周期
    发表于 02-21 08:42

    文速览石墨的奥秘

    体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应(2009),而获得2010年度诺贝尔物理学奖。   1   一种未来革命性的材料 石墨是碳的同素异形体,碳原子以sp²杂
    的头像 发表于 02-18 14:11 1473次阅读
    <b class='flag-5'>一</b>文速览<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>的奥秘

    赫兹波的产生方式

    本文简单介绍了三赫兹波的产生方式。 赫兹波(THz)是一种电磁波,在电磁波谱上位于红外与微
    的头像 发表于 02-17 09:09 3498次阅读
    三<b class='flag-5'>种</b><b class='flag-5'>太</b><b class='flag-5'>赫兹</b>波的产生方式

    增强石墨器件稳定性的方案

    最近发表在《Small》杂志上的项研究探讨了一种提高跨膜纳米流体设备中石墨膜稳定性的新方法。研究人员使用一种基于芘的涂层来加强
    的头像 发表于 02-14 10:56 596次阅读

    金刚石-石墨异质结构涂层介绍

    金刚石和石墨固有的脆性和缺乏自我支撑能力限制了它们在耐用润滑系统中的应用。
    的头像 发表于 02-13 10:57 899次阅读
    金刚石-<b class='flag-5'>石墨</b><b class='flag-5'>烯</b><b class='flag-5'>异质</b><b class='flag-5'>结构</b>涂层介绍

    魔角石墨刚度首次测得

    美国麻省理工学院和哈佛大学的物理学家首次在“魔角”石墨中直接测量了刚度。刚度是衡量材料
    的头像 发表于 02-07 11:14 616次阅读
    魔角<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>,<b class='flag-5'>超</b><b class='flag-5'>流</b>刚度首次测得

    石墨异质结构新进展

    原子级薄的范德瓦尔斯van der Waals (vdW) 薄膜,为量子异质结构的外延生长提供了新材料体系。然而,不同于三维块晶体的远程外延生长,由于较弱的范德华vdW相互作用,跨原子层的二维材料异质
    的头像 发表于 02-05 15:13 903次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b><b class='flag-5'>异质</b><b class='flag-5'>结构</b>新进展

    石墨发现到鸟粪掺杂石墨,未来将会如何?

    of Graphene》的观点论文。这篇文章回顾了石墨发现的二十年历程,强调了这材料在基础科学和应用技术领域的广泛影响。文中提到,石墨
    的头像 发表于 01-16 14:11 1017次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>发现到鸟粪掺杂<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>,未来将会如何?

    石墨的分类

    石墨一种由碳原子以sp²杂化轨道构成的二维纳米材料,具有独特的六角蜂窝状晶格结构。根据不同的分类标准,石墨
    的头像 发表于 01-14 14:37 3122次阅读

    石墨的基本特性‌,制备方法‌和应用领域

    石墨技术是一种基于石墨这种新型材料的技术,石墨
    的头像 发表于 01-14 11:02 1321次阅读

    石墨材料如何推动量产芯片的新时代?

    石墨,这种因其多种结构、热学和电子特性而受到广泛赞誉的二维(2D)材料,已从实验室走向如今可供购买的量产芯片。这标志着电子行业先进材料转型的早期阶段。这篇文章将介绍
    的头像 发表于 12-25 10:42 1452次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>材料如何推动量产芯片的新时代?