0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

怎么把机器学习这只“大象”放进MCU的“冰箱”?

UNTL_安富利 来源:安富利 作者:安富利 2021-05-19 15:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工智能AI)在很多人眼里是,只是一种科幻片中不明觉厉的存在,而与普通人的生活之间隔着很远的距离。但是这样的局面正在被改变,在未来5-10年中,AI将会以超乎我们想象的速度快速渗透到我们生活的方方面面。为什么这么讲?一起随我们往下看。

人工智能物联网的基本范式

之所以我们与AI之间会有“距离感”,主要是因为以前玩AI是一件比较奢侈的事。这种“奢侈”主要体现在,实现AI所依赖的机器学习(ML),在其训练和推理的过程中对算力有非常高的要求。为了应对这样的挑战,通过云计算集中算力做数据处理,也就成为了实现机器学习的一个经典方法。

但是到了物联网时代,这样的模式受到了挑战——集中式云计算带宽和存储资源消耗大、实时数据传输消耗电量多、数据在终端和云端之间传输延迟长、数据传输和云端集中存储过程中安全风险大。这些弊端让人们认识到单纯的云计算不是包打天下的万能药。

因此,边缘计算作为经典云计算的补充,越来越得到大家的重视。按照边缘计算的定义,将大部分计算任务放在边缘设备上直接进行处理,而只在必要的时候将一些经过预处理的数据传输至云端进行“精加工”,这样既能提升边缘端实时响应的速度和智能化水平,又能为网络传输通路和云端数据中心减负,因此这样的混合计算模式显然可以完美地坚决传统云计算的痛点。

这种计算架构的变迁,也对机器学习的模式产生了影响,使其从以计算为中心的模式向以数据为中心的模式转变。这两种模式中,前者是将机器学习的训练和推理都放在云端数据中心中完成,而后者则是由云端完成模型的训练,而将推理放在边缘设备上完成,这也就形成了人工智能物联网(AIoT)实施的基本范式。

MCU扩展机器学习的疆界

显而易见,边缘计算使得机器学习的疆界大为扩展,使其从数据中心的机房走向了更多样性的网络边缘智能。但对于物联网应用来讲,这似乎还不够。因为在边缘设备上进行推理,仍然需要相对强悍的算力,这通常需要包含ML协处理器在内的较为复杂的异构微处理器来实现加速,如此的配置在嵌入式领域已经算是很“高端”的了。仅此一条,就会将不少对于功耗、成本、实时性敏感的应用关在机器学习的门外。

因此,机器学习想要继续开疆扩土,一个主攻方向就是要让资源更简单、算力更有限的微控制器(MCU)也能够跑得了、玩得起机器学习。IC Insights的研究数据显示,2018年全球MCU的出货量为281亿颗,到2023年将这个数字将增长到382亿颗,而全球的MCU存量将数以千亿计,谁要是能够让如此量级的设备玩转机器学习,其前途和钱途都将是不可限量的!

但对于任何一个梦想来说,现实往往显得比较“骨感”。将机器学习部署到MCU运行,就好像是要将一只大象塞进冰箱,而这个答案绝对不是一句脑筋急转弯的玩笑话,而是需要在技术从两个维度上去仔细考量。

为机器学习模型瘦身

第一个维度,就是要考虑如何为ML模型这只“大象”进行“瘦身”,也就是说要发展出相应的技术,能够在微控制器上部署、运行“小型化”的机器学习推理模型。这种瘦身后的模型,需要满足的条件包括:

运行模型的终端功耗一般在mW级别,甚至更低;

占用的内存一般要在几百kB以下;

推理时间为ms级别,一般需要在1s内完成。

为了实现这样的目标,TinyML技术应运而生。顾名思义,这就是一种能够让ML模型“变小”的技术。与上文提到的AIoT机器学习的基本范式一样,TinyML也是要在云端收集数据并进行训练,而不同之处则在于训练后模型的优化和部署——为了适应MCU有限的计算资源,TinyML必须对模型进行“深度压缩”,通过模型的蒸馏(Distillation)、量化(Quantization)、编码(Encoding)、编译(Compilation)一系列操作后才能部署到边缘终端上。

其中,一些关键的技术包括:

蒸馏:是指在训练后通过剪枝(pruning)和知识蒸馏的技术手段,对模型进行更改,以创建更紧凑的表示形式。

量化:在模型蒸馏后,通过量化实现以更少位数的数据类型近似表示32位浮点型数据,在可接受的精度损失范围之内减少模型尺寸大小、内存消耗并加快模型推理速度。

编码:就是通过更有效的编码方式(如霍夫曼编码)来存储数据,进一步减小模型规模。

编译:通过以上方式压缩好的模型,将被编译为可被大多MCU使用的C或C++代码,通过设备上的轻量级网络解释器(如TF Lite和TF Lite Micro)运行。

在过去的两年中,我们已经明显感觉到TinyML技术在升温,厂商在该领域的投入也在加码。根据Silent Intelligence的预测,未来5年中,TinyML将触发超过700亿美元的经济价值,并且保持超过27.3%的复合年均增长率。

打造机器学习MCU新物种

把“大象装进冰箱“,除了要在“大象”(也就是ML模型)身上下功夫,另一个维度上的努力就是要改造“冰箱”,也就是对我们熟悉的MCU进行优化和改造,令其能够符合运行ML的需要。

比如,为了满足在IoT边缘设备中实现复杂机器学习功能的需要,Maxim Integrated就推出一款专门的低功耗ML微控制器MAX78000。该器件内置Arm Cortex-M4F处理器(100MHz)和32位RISC-V协处理器(60MHz),以及支持64层网络深度的卷积神经网络加速器,可在电池供电应用中执行AI推理,而仅消耗微焦耳能量。与传统的软件方案相比,这种基于硬件加速的方案使得复杂的AI推理能耗降至前者的百分之一,而推理速度则可以快100倍。

预计具有类似ML特性的新物种,将成为未来各家MCU大厂产品路线图中的重要分支。

本文小结

综上所述,与微处理器或者x86等嵌入式计算架构相比,MCU具有功耗很低、成本低、开发周期短、上市快、实时性好、市场体量大等特点,这些特性如果能够和高能的机器学习结合在一起,其想象空间无疑是巨大的。

在促成两者“结合”的过程中,如果能够为开发者提供支持机器学习功能的MCU“新物种”,如果能够提供一个完整的开发工具链,让ML模型的优化和部署更顺手,那么把机器学习这只“大象”放进MCU的“冰箱”,将成为信手拈来的轻松事。

更重要的是,这样的趋势刚刚萌芽,你完全有机会成为一只early bird,在这个全新的领域中自由的飞翔。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 嵌入式
    +关注

    关注

    5186

    文章

    20156

    浏览量

    328977
  • 云计算
    +关注

    关注

    39

    文章

    8003

    浏览量

    143125
  • 物联网
    +关注

    关注

    2939

    文章

    47332

    浏览量

    408069
  • 人工智能
    +关注

    关注

    1813

    文章

    49750

    浏览量

    261618

原文标题:如何把机器学习这只“大象”,放进MCU的“冰箱”?

文章出处:【微信号:安富利,微信公众号:AvnetAsia】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    在极海APM32系列MCU中如何代码重定位到SDRAM运行

    在有些情况下,我们想要把代码放到SDRAM运行。下面介绍在APM32的MCU中,如何代码重定位到SDRAM运行。对于不同APM32系列的MCU,方法都是一样的。
    的头像 发表于 11-04 09:14 4845次阅读
    在极海APM32系列<b class='flag-5'>MCU</b>中如何<b class='flag-5'>把</b>代码重定位到SDRAM运行

    浮思特 | 浅析现代单片机(ABOV)在智能冰箱中的核心角色

    随着消费者对家电智能化、节能化需求的不断提升,电冰箱早已不再是简单的“制冷柜”,而是集精确温控、高效节能、人性化交互于一体的家庭智慧中心。在这一演进过程中,作为冰箱“大脑”的微控制器(MCU)扮演着
    的头像 发表于 09-29 09:48 476次阅读
    浮思特 | 浅析现代单片机(ABOV)在智能<b class='flag-5'>冰箱</b>中的核心角色

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 2638次阅读

    福禄克温度记录仪在超低温冰箱中的应用

    当你冰淇淋放进家用冰箱时,超低温冰箱正在-80℃的极寒中守护着疫苗、细胞样本等珍贵物资。但如何确保这个"极寒堡垒"不罢工?
    的头像 发表于 07-07 15:47 615次阅读

    大象机器人携手进迭时空推出 RISC-V 全栈开源六轴机械臂产品

    大象机器人成立于2016年,专注协作机器人研发与应用,产品线涵盖轻量级协作机器人、人形机器人、仿生机器
    的头像 发表于 06-06 16:55 1149次阅读
    <b class='flag-5'>大象</b><b class='flag-5'>机器</b>人携手进迭时空推出 RISC-V 全栈开源六轴机械臂产品

    大象机器人携手进迭时空推出 RISC-V 全栈开源六轴机械臂产品

    大象机器人成立于2016年,专注协作机器人研发与应用,产品线涵盖轻量级协作机器人、人形机器人、仿生机器
    发表于 04-25 17:59

    大象机器人推出myCobot 280 RDK X5,携手地瓜机器人共建智能教育机

    摘要大象机器人全新推出轻量级高性能教育机械臂myCobot280RDKX5,该产品集成地瓜机器人RDKX5开发者套件,深度整合双方在硬件研发与智能计算领域的技术优势,实现芯片架构、软件算法、硬件结构
    的头像 发表于 04-15 22:05 1101次阅读
    <b class='flag-5'>大象</b><b class='flag-5'>机器</b>人推出myCobot 280 RDK X5,携手地瓜<b class='flag-5'>机器</b>人共建智能教育机

    大象机器人以科技治愈人心

    当冰冷的代码被赋予人性的温度,科技便有了治愈人心的力量。大象机器人公司始终致力于通过机器人技术改善人们的生活,"享受机器人世界"是大象
    的头像 发表于 02-20 11:17 1163次阅读

    SLAMTEC Aurora:深度学习“卷”进机器人日常

    在人工智能和机器人技术飞速发展的今天,深度学习与SLAM(同步定位与地图构建)技术的结合,正引领着智能机器人行业迈向新的高度。最近科技圈顶流DeepSeek简直杀疯了!靠着逆天的深度学习
    的头像 发表于 02-19 15:49 727次阅读

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 627次阅读

    嵌入式机器学习的应用特性与软件开发环境

    作者:DigiKey Editor 在许多嵌入式系统中,必须采用嵌入式机器学习(Embedded Machine Learning)技术,这是指将机器学习模型部署在资源受限的设备(如微
    的头像 发表于 01-25 17:05 1220次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 1983次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 701次阅读

    zeta在机器学习中的应用 zeta的优缺点分析

    在探讨ZETA在机器学习中的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在机器学习
    的头像 发表于 12-20 09:11 1629次阅读

    如何在低功耗MCU上实现人工智能和机器学习

    人工智能 (AI) 和机器学习 (ML) 的技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器 (MCU) 中,从而实现边缘AI/ML的解决方案。
    的头像 发表于 12-17 16:06 1289次阅读