0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

分析遥测噪声数据无损压缩关键技术实现

电子工程师 来源:电子技术应用 作者:崔海波,梁庭,景 2021-04-08 13:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

0 引言

飞行器的工作状态参数和环境参数主要通过无线遥测和回收遥测获得,是评定飞行器性能和分析飞行器故障的依据[1]。随着航天技术的发展,飞行器内部的工作参数越发复杂,遥测数据的信息量越来越大,遥测系统现有的存储能力和信道带宽已经很难满足如此大数据量的存储、传输要求。考虑到技术、成本等条件的限制,一味增加信道带宽和存储器的容量是不现实的。目前,数据压缩技术被广泛应用于遥测系统[2]。根据遥测数据的特点,采用合适的算法对大数据量的遥测数据进行编码压缩,不仅减轻了遥测系统数据存储的压力,也降低了对信道带宽的要求,提高了通信效率。

遥测噪声信号的频率和幅度变化很大且无规则,信号的相关性差,为反映信号的完整特性,需要较高的采样频率,这样就会产生很大的数据量。为有效地完成对噪声信号的测量,这里采用ARC(算术编码)算法对噪声数据进行无损压缩,以DSP+FPGA为硬件平台[3],充分利用FPGA高速、并行的特性和DSP在算法实现上的优势,很好地实现了对遥测噪声数据的实时、无损压缩。

1 系统设计

系统整体设计框图如图1所示,由噪声传感器采集的噪声信号经调理电路滤波、放大后,进行A/D转换得到量化噪声数据;FPGA将噪声数据写入内部8 KB FIFO,直到FIFO达到半满[4],DSP才会读取噪声数据进行算术编码;编码压缩后的噪声数据先是被DSP缓存至SDRAM,然后通过McBSP串口发送到FPGA,FPGA通过内建的4 KB FIFO对接收的压缩数据进行缓冲;422通信控制模块会接收读数命令并在4 KB FIFO达到半满时按照HDLC协议的要求将压缩数据传输到外部设备进行存储、传输和分析等操作。

6356652118777000007641521.gif

2 数模转换电路设计

噪声信号的模数转换采用TI公司的ADS8365芯片实现。它是16位6通道并行A/D,最高采样率可达250 kS/s,完全满足对4路噪声信号进行27 kHz采样的要求。

ADS8365的6个模拟输入通道可分为3组,分别为A、B和C组[5]。每组都有一个保持信号(分别为HOLDA、HOLDB和HOLDC),用于启动各组的A/D转换。6个通道可以进行同步并行采样和转换。当ADS8365的HOLDX保持20 ns的低电平后开始转换。当转换结果被存入输出寄存器后,引脚EOC的输出将保持半个时钟周期的低电平,以提示FPGA进行转换结果的接收,FPGA通过置RD和CS为低电平使数据通过并行输出总线读出。

ADS8365的数据的读出模式有3种,分别是:直接地址读取、FIFO读取、循环读取,是由地址/模式信号A0、A1和A2来选择的[6]。本系统FPGA将数据读出配置为FIFO读取模式。A/D转换电路如图2所示。

6356652121632900003651591.gif

3 FPGA与DSP通信设计

FPGA控制ADS8365完成对4路噪声信号的A/D转换,各路量化数据加入通道标志后依次写入FPGA内部FIFO。当FIFO达到半满后,通知DSP读取2 048 B数据进行编码,编码时间最长为40 ms,平均20 ms。DSP在编码过程中不能与FPGA进行数据通信,FPGA要对由A/D产生的量化数据进行缓存。按最长耗时40 ms计算,每路27 kHz的采样率会产生为4.32 K个采样点。采用16位FIFO,则FIFO的深度应大于4 320,这里为增加可靠性,设计FIFO深度为8 192。

FPGA内部FIFO由Block RAM构建,其与DSP EMIF接口的连接如图3所示。

6356652125838000009424541.gif

噪声数据经DSP压缩后可以通过并行EMIF总线传输至FPGA。但为降低数据传输误码率,提高系统稳定性,本设计采用DSP的McBSP0串口将压缩后的数据以串行数据流的方式传送至FPGA。McBSP0传输单元的大小设置为48 bit,包括4 bit起始位、32位数据位和12 bit停止位。FPGA将串行接收的压缩数据转换成8 bit并行数据并将其写入到内部4 KB FIFO中。FPGA通过422接口与外部设备通信,在接收到读数命令后判断4 KB FIFO是否达到半满。如果FIFO达到半满,就读取FIFO中的数据,并进行HDLC协议编码和帧格式编码后发送出去;否则采用填充帧技术,将预先定义好的一组固定帧结构数据发送给外部设备。

4 DSP程序设计

基于C语言的各种常见压缩算法的开发都已很成熟,ARC算法的源程序也容易调研,算法的具体实现过程在此不再赘述。本设计将ARC源程序移植到DSP中实现算法的压缩功能,DSP上电启动或者复位后,从 Flash中加载程序,进入主函数main()完成外部FIFO数据读入、启动ARC压缩,读写SDRAM和数据输出等工作工作。程序流程如图4所示。

6356652128442700003915691.gif

当DSP检测到外部8 KB FIFO半满信号后会读取2 048 B噪声数据到内部4个缓存中,由于4路噪声信号采样时仅相差一个采样点,故各路噪声数据相差一个字节。DSP内4路噪声数据对应的缓存几乎同时达到2 048 B, DSP需要同时对4路噪声数据进行编码,这会使DSP长时间处于繁忙状态而不能进行采样数据的读入和压缩数据的输出,容易引起FPGA内部8 KB FIFO溢出和4 KB FIFO的读空。

如果采用中断方式打断压缩进程、读入量化数据和输出压缩数据,则可能造成DSP内数据量过大,超出DSP片内RAM容量。这里将DSP内的4个缓存预设初值分别设为1 536 B、1 024 B、512 B和0 B,DSP每次从FPGA内部FIFO中读取2 048 B数据,则DSP内每个缓存增加512 B。DAP第一次读取FIFO,第一路噪声数据对应的缓存达到2 048 B,进行编码、输出后,该缓存数据量变为0。

此时,4路缓存中的字节数变为0、1 536、1 024和512。DSP第二次读取FIFO后,第2路数据缓存达到2 048 B,完成对第二路噪声数据的编码、传输。如此循环执行,实现每次只对一路噪声数据进行处理,保证了数据的连续均匀流动。

5 测试验证与分析

采用测试系统对设计的噪声压缩装置的性能进行了验证,测试系统的测试台向噪声压缩装置提供4路信号来模拟噪声传感器的输入,噪声压缩装置对输入信号完成压缩后将数据回传给测试台并由测试台将压缩数据上传至上位机。上位机对压缩数据先进行数据结构分析,如果数据结构正确,就按照HDLC协议将数据解码并去除填充数据和帧标识。之后根据ARC算法将噪声数据解压还原并分离得到各路噪声原始数据,上位机对各路噪声原始数据进行处理,还原出各路信号的原始波形。

给噪声无损压缩装置的噪声信号输入接口输入信号,其中第1路为幅值2 V、频率25 Hz的正弦波,第2路为幅值3 V、频率25 Hz的正弦波,第3路为幅值2 V、频率50 Hz的正弦波,第4路为幅值2 V、频率25 Hz的矩形波。测试结果如图5~图8所示。

6356652133830300002504531.gif

6356652134685000004430630.gif

6356652135472100001430257.gif

6356652136191600008274166.gif

从测试结果可以看出,同一种信号幅值、频率不同,它们的压缩去除率会存在差异;幅值、频率相同,不同种类信号的压缩去除率也会不同。对标准信号源,该压缩装置的压缩去除率接近90%。图9为噪声压缩装置对实际噪声信号压缩后由上位机还原得到的波形,可以看出该压缩装置对实际噪声信号的压缩去除率能达到50%以上。

6356652138709400009597039.gif

6 结论

数据压缩技术在遥测系统中对包括噪声信号在内的速变参数的处理已经很常见,本文设计的系统以FPGA+DSP为硬件核心,其中,FPGA主要完成对模/数转换和数据通信的控制,噪声数据的编码无损压缩则是在DSP中实现的。同时,采用不同信号对设计的噪声压缩装置进行了测试,得到了理想的效果。本文提出的设计思路对其他类型数据的压缩也有一定的借鉴意义。

参考文献

[1] 谢红卫,张明.航天测控系统[M].长沙:国防科技大学出版社,2000.

[2] 刘文怡.遥测速变数据无损压缩时空性能优化设计与应用[D].太原:中北大学,2009.

[3] 冷佳鹏,刘文怡.一种遥测数据实时压缩系统[J].电子技术应用,2013,39(4):72-74.

[4] 孟楠,杨岩飞,刘文怡.遥测速变数据实时无损压缩技术研究[J].科学技术与工程,2013,13(33):9983-9986.

[5] 张峰,赵慧昌,石现峰.便携式多通道振动信号分析仪数采模块设计[J].自动化与仪表,2014(1):15-18.

[6] 康伟,路秀芬,詹哲军.基于ADS8365的高速同步数据采集系统[J].电脑开发与应用,2009,22(4):48-51.

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54368

    浏览量

    785995
  • FPGA
    +关注

    关注

    1655

    文章

    22283

    浏览量

    630216
  • 噪声
    +关注

    关注

    13

    文章

    1154

    浏览量

    48897
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于CW32 MCU的I2C接口优化稳定读写EEPROM关键技术

    CW32 MCU优化I2C接口,确保在与EEPROM芯片通信时的稳定性。内容涵盖以下几个关键技术点: I2C时序与频率调整:介绍如何根据EEPROM的特性,合理设置I2C时钟频率和时序参数,避免因过高或
    发表于 12-03 07:29

    实现OCXO超低相位噪声关键技术

    恒温晶体振荡器(OCXO)在精密计时领域具有不可替代的地位,其卓越性能源于对相位噪声的系统性控制。要达成这一目标,需要从材料选择、电路设计到环境控制的全方位优化。以下是实现超低相位噪声的六个
    的头像 发表于 11-21 11:24 115次阅读
    <b class='flag-5'>实现</b>OCXO超低相位<b class='flag-5'>噪声</b>的<b class='flag-5'>关键技术</b>

    噪声测量的关键技术方法与精度控制策略

    本文阐述了高速电路与低功耗系统中噪声测量的关键技术,包括设备选型、环境优化及参数设置,强调精度控制与干扰抑制。
    的头像 发表于 10-30 14:10 115次阅读

    设备互联的关键技术有哪些

    物联网中设备互联的关键技术涵盖感知、传输、处理、安全及协同管理等多个层级,这些技术共同支撑设备从数据采集到智能协作的全流程,具体可分为以下核心模块: 一、感知层:设备互联的数据源头 传
    的头像 发表于 08-22 14:41 482次阅读

    无人值守光伏电站管理系统实现关键技术

    、智能诊断和自动控制,从而减少人工干预、提升运营效率。 光伏电要实现无人值守,需要采取多种关键技术,如物联网与传感器技术、人工智能与大数据、自动化控制与执行、安全与可靠性设计等。物联网
    的头像 发表于 07-11 11:00 757次阅读
    无人值守光伏电站管理系统<b class='flag-5'>实现</b>的<b class='flag-5'>关键技术</b>

    双电机驱动系统消隙技术分析

    摘要: 双电机驱动系统是电力系统中重要的电机系统,双电机驱动的消隙技术是双电机驱动系统中的关键技术,双电机驱动系统能否实现正常运行关键在于消隙技术
    发表于 06-19 11:01

    电机系统节能关键技术及展望

    节约能源既是我国经济和社会发展的一项长远战略和基本国策,也是当前的紧迫任务。论文在深入分析国内外电机系统节能现状和介绍先进的节能关键技术的基础上,指出了现阶段我国在电机系统节能方面存在的问题,并结合
    发表于 04-30 00:43

    浅谈华为通信大模型的关键技术

    推理、幻觉纠正及多维联合决策等方面创新成果的肯定。为此,我们将分三期深入解读华为通信大模型无线的关键技术和价值应用,本期聚焦于通信大模型的部署、训练和推理的关键技术
    的头像 发表于 03-26 14:35 1009次阅读

    智能交通的关键技术支撑

    智能交通系统的发展离不开一系列关键技术的支撑。这些技术不仅推动了交通系统的智能化升级,更重要的是为未来交通模式的创新提供了可能。从数据采集到智能决策,从车路协同到自动驾驶,每一项技术
    的头像 发表于 03-17 15:38 561次阅读

    信而泰PFC/ECN流量测试方案:打造智能无损网络的关键利器

    控制)和ECN(显式拥塞通知)作为智能无损网络的关键技术,能够有效解决网络拥塞问题,保障数据传输的低延迟和高吞吐量。然而,如何验证和优化PFC/ECN技术的水线参数,提升
    的头像 发表于 03-13 09:53 1128次阅读
    信而泰PFC/ECN流量测试方案:打造智能<b class='flag-5'>无损</b>网络的<b class='flag-5'>关键</b>利器

    LZO Data Compression,高性能LZO无损数据压缩加速器介绍,FPGA&amp;ASIC

    LZOAccel-CLZO Data Compression Core/无损数据压缩IP CoreLZOAccel-C是一个无损数据压缩引擎的FPGA硬件
    发表于 01-24 23:53

    LZO Data Compression,高性能LZO无损数据压缩加速器介绍,FPGA&amp;ASIC

    LZOAccel-C是一个无损数据压缩引擎的FPGA硬件实现,兼容LZO 2.10标准。Core接收未压缩的输入数据块,产生
    的头像 发表于 01-13 12:41 1023次阅读
    LZO Data Compression,高性能LZO<b class='flag-5'>无损</b><b class='flag-5'>数据压缩</b>加速器介绍,FPGA&amp;ASIC

    SOA关键技术专利分析(一)

    与 SOA 相关的研究都集中在技术讨论或市场研究上,但未能指出关键的 SOA 技术和 SOA 技术的发展趋势。因此,本研究对 SOA 专利进行了分析
    的头像 发表于 12-19 09:52 643次阅读
    SOA<b class='flag-5'>关键技术</b>专利<b class='flag-5'>分析</b>(一)

    云计算HPC软件关键技术

    云计算HPC软件关键技术涉及系统架构、处理器技术、操作系统、计算加速、网络技术以及软件优化等多个方面。下面,AI部落小编带您探讨云计算HPC软件的关键技术
    的头像 发表于 12-18 11:23 797次阅读

    相位噪声分析仪的技术原理和应用

    输入信号的相位噪声与频率稳定性来评估振荡器的性能。具体来说,其技术原理包括以下几个步骤: 时钟提取:相位噪声分析仪需要从输入信号中提取时钟信号。这通常通过锁相环(PLL)或倍频器等电路
    发表于 12-13 14:21