0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器视觉:图像二值化

新机器视觉 来源:新机器视觉 作者:新机器视觉 2021-03-29 14:12 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

传统的机器视觉通常包括两个步骤——预处理和物体检测。而沟通二者的桥梁则是图像分割(Image Segmentation)[1]。图像分割通过简化或改变图像的表示形式,使得图像更易于分析。

举个例子,食品加工厂新进了一批肉鸡,想通过视觉检测其美味程度。机器在预处理优化完图像之后,要先把图像中的鸡肉和背景分开,并对感兴趣的区域单独进行分析,才能做出快速准确的判断。

食品加工厂的视觉处理

然而,图像分割对愚蠢的AI来说并不容易。聪明的人类一眼就能看出下图中哪些东西能吃、哪些不能吃。但计算机要把这些东西分开却得花费一番功夫。

原图

图像分割结果

最简单的图像分割方法是二值化(Binarization)。二值图像每个像素只有两种取值:要么纯黑,要么纯白。

彩色图、灰度图、二值图对比

由于二值图像数据足够简单,许多视觉算法都依赖二值图像。通过二值图像,能更好地分析物体的形状和轮廓。二值图像也常常用作原始图像的掩模(又称遮罩、蒙版,Mask):它就像一张部分镂空的纸,把我们不感兴趣的区域遮掉。进行二值化有多种方式,其中最常用的就是采用阈值法(Thresholding)进行二值化。

计算机视觉里,一般用矩阵来表示图像。也就是说,无论你的图片看上去多么好吃,对计算机来说都不过是个矩阵而已。

在这个矩阵里,每一个像素就是矩阵中的一个元素。在三通道的彩色图像中,这个元素是由三个数字组成的元组。

彩色三通道图像

而对于单通道的灰度图像来说,这个元素就是一个数字。这个数字代表了图像在这个点的亮度,数字越大像素点也就越亮,在常见的八位单通道色彩空间中,0代表全黑,255代表全白。

单通道的灰度图

阈值法是指选取一个数字,大于它就视为全白,小于它就视为全黑。就像教室里的灯管开关,我们轻轻地推动它,如果突然间超过了某个阈值,灯就啪的一声亮了。

根据阈值选取方式的不同,可以分为全局阈值和局部阈值。

全局阈值

Global Method

全局阈值,指的是对整个图像中的每一个像素都选用相同的阈值。我们可以在Photoshop的图像-调整-阈值里体验这一操作:

Photoshop里的阈值

可以看到阈值色阶从1到255的移动过程中,图像变黑的区域越来越多。当阈值数字在某个特定范围内的时候,红米肠的轮廓清晰可辨。

正确的二值化使红米肠轮廓清晰可辨

在生产线环境下,光照是已知的,常常会设定一个固定的数字来作为全局阈值。但是在室外或者机器人比赛中,光照条件往往更加复杂*。

RoboMaster赛场的绚丽灯光

*此图采用了夸张手法,RoboMaster是个很正规的比赛,绝对不会在比赛的时候这么难为大家的。

同样是奥利奥冰激凌,在白天和晚上,摄像头看到的画面可能不太一样,常数阈值无法同时适应这两种情况。

明暗不同的画面

对于画面比较暗的晚上,我们需要一个比较低的阈值,比如说设定阈值为50,它在晚上能很清楚地把黑白两种颜色分开,但是到了白天就是一片白(左边);如果我们把阈值设置得比较高,比如说172,在白天能顺利分割,但在晚上就是一片黑(右边)。我们需要能够适应复杂环境的算法。

左边阈值=50,右边阈值=172

其实,稍作分析我们可以发现,这张图像中的颜色差异还是比较明显的,只有深浅两种颜色。因此,无论是在白天还是黑夜,它的色阶直方图都应该是两个明显的波峰,分别代表深色和浅色的区域。只是色阶直方图在白天会整体向右偏移,而在夜晚整体向左偏移。

图像的色阶直方图

如果选择两个波峰之间的波谷作为阈值,就能轻松地把这两类像素分开。但是图像的直方图往往是不连续的,有非常多尖峰和抖动,要找到准确的极值点十分困难。

日本工程师大津展之为这个波谷找到了一个合适的数学表达,并于1979年发表[2]。这个二值化方法称为大津算法(Otsu’s method)。大津算法类似于一维Fisher判别分析的离散化模拟。通过穷举法找到一个阈值数字,把这些像素切成两类,使得这两类像素的亮度的类内方差最小。类内方差指的是两类像素的方差的加权和,这里权指的是这类像素点数量占整个图像像素点数量的比值。

也许你的画面不会只有两坨差异较大的颜色,比如这款雪糕的就有三个尖峰。

三色雪糕(取雪糕部位的直方图)

这时候,只需对大津算法稍加扩展也可以完成。对大津算法的多级推广成为多大津算法(multi Otsu method)[3]。

局部阈值*

Local Method

*又称自适应阈值,Adaptive Thresholding

比赛中常常会有聚光灯照在一个特定区域,产生局部受光、局部不受光的画面。

局部受光的图像

对于局部受光的图像进行全局阈值,可能会出现“无论设置什么阈值参数,都无法满足全图要求”的尴尬。比如上面这幅图像,直接进行全局阈值时,左上半边的寿司全都显露出来时,右下半边还是一片黑色。

局部受光图像的全局阈值处理

这个时候我们就要用到局部阈值来处理了。其实,人的眼睛也是自带了这一步操作的。我们判定一个东西颜色深浅,往往会受到物体周边的颜色影响,这也就是为什么黑人的牙齿看上去更白。

局部阈值法假定图像在一定区域内受到的光照比较接近。它用一个滑窗扫描图像,并取滑窗中心点亮度与滑窗内其他区域(称为邻域, neighborhood area)的亮度进行比较。如果中心点亮度高于邻域亮度*,则将中心点标记为白色,否则标记为黑色。

局部阈值的滑窗

*这里提到的是局部阈值的基本方法,对于实际使用中常见的其他局部阈值方法,请参阅Chow-Kaneko自适应阈值法[4]。

局部阈值的应用非常广泛,特别是对白纸黑字的处理非常有效。光学字符识别(OCR)和二维码扫描的算法中,很多都用了局部阈值操作。

比如下面这张二维码就是一张典型的局部受光图像:

扫扫看,局部受光的二维码

如果对这张图片采用全局阈值(例如下图采用大津算法进行分割),是无论如何都无法正确分割的。

全局方法不能处理局部受光图像

而采用局部阈值方法就能很好地分割图像。从图片里可以明显观察到,局部阈值方法对于一大片干净区域的细节比较敏感,所以纸面上多出了很多我们原本注意不到的斑点。

局部方法分割二维码

◆◆◆

实际运用中,我们要根据需求选择不同的二值化方法,没有哪个方法是绝对完美的。

例如,在识别敌方机器人时,由于装甲片灯条是自发光物体,受环境光影响较小,为了提高程序运行效率,我们采用固定数字作为全局阈值:

基地自动反击

在能量机关的识别中,由于能量机关只有黑白两种颜色,我们采用了大津算法及其多种变体:

大能量机关各区域的二值图

而在空中机器人读取基地区二维码的时候又用到了局部阈值方法:

空中机器人识别基地

今天所讲的内容只是图像分割的冰山一角,作为视觉领域最古老的问题之一,时至今日仍有非常多图像分割的新算法被提出。

除了基于阈值的图像分割方法外,常用的分割方法还可以基于边缘(如Yanowitz-Bruckstein自适应阈值方法[5])、区域(如区域生长算法[6])等,它们在卫星图像处理、交通控制系统、工业生产监控、医疗影像等领域发挥着巨大的作用。

脑部组织图像分割

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    89

    文章

    38090

    浏览量

    296493
  • 图像分割
    +关注

    关注

    4

    文章

    182

    浏览量

    18674
  • 二值化
    +关注

    关注

    0

    文章

    13

    浏览量

    4412

原文标题:机器视觉入门之图像二值化

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动设备机器视觉检测光源产品的优势和劣势

    机器视觉光源,缺陷检测,自动视觉检测机器视觉光源
    的头像 发表于 11-27 10:17 49次阅读
    自动<b class='flag-5'>化</b>设备<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>检测光源产品的优势和劣势

    图像采集卡:机器视觉时代的图像数据核心枢纽

    一、图像采集卡的技术本质:从信号到数据的“转换器”与“传输通道”图像采集卡(ImageCaptureCard)是机器视觉系统的核心硬件组件,本质是通过专用芯片(如FPGA、ASIC)实
    的头像 发表于 11-12 15:15 287次阅读
    <b class='flag-5'>图像</b>采集卡:<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>时代的<b class='flag-5'>图像</b>数据核心枢纽

    使用Otsu阈值算法将灰度图像

    Otsu 算法是由日本学者OTSU于1979年提出的一种对图像进行的高效算法,又称“最大类间方差法”。当我们对一个图象进行
    发表于 10-28 06:49

    机器视觉检测PIN针

    物理损伤)必须进行极其精密的测量与核查。以往依赖人眼的检测方式存在明显短板:不仅作业速度慢、受人员状态影响大(易疲劳导致误判),而且在面对日益严苛的微米级精度标准时显得力不从心。相比之下,基于机器视觉
    发表于 09-26 15:09

    iTOF技术,多样的3D视觉应用

    视觉传感器对于机器信息获取至关重要,正在从维(2D)发展到三维(3D),在某些方面模仿并超越人类的视觉能力,从而推动创新应用。3D 视觉
    发表于 09-05 07:24

    图像采集卡与工业相机:机器视觉“双剑合璧”的效能解析

    在工业自动、科学研究和安防监控等关键领域,“看得清”是无数决策的基础。机器视觉系统如同为机器赋予慧眼,而在这双慧眼中,工业相机与图像采集卡
    的头像 发表于 08-19 12:39 544次阅读
    <b class='flag-5'>图像</b>采集卡与工业相机:<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>“双剑合璧”的效能解析

    易灵思与思特威第机器视觉大会即将举办

    去年盛夏,首届易灵思与思特威机器视觉技术大会点燃了行业创新的火花。易灵思惊艳亮相的 TJ375 FPGA与思特威的工业CMOS图像传感器系列交相辉映,为机器
    的头像 发表于 08-13 09:53 689次阅读

    机器视觉系统工业相机的成像原理及如何选型

    机器视觉系统是一种模拟人类视觉功能,通过光学装置和非接触式传感器获取图像数据,并进行分析和处理,以实现对目标物体的识别、测量、检测和定位等功能的智能
    的头像 发表于 08-07 14:14 1015次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉</b>系统工业相机的成像原理及如何选型

    一文带你了解什么是机器视觉网卡

    机器视觉网卡通常指的是在机器视觉系统中用于连接工业相机到计算机的以太网卡。它的核心作用是实现高速、稳定、低延迟的图像数据传输。以下是关于
    的头像 发表于 07-09 16:18 415次阅读
    一文带你了解什么是<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>网卡

    工业相机图像采集卡:机器视觉的核心枢纽

    工业相机图像采集卡是用于连接工业相机与计算机的关键硬件设备,主要负责将相机输出的图像信号转换为计算机可处理的数字信号,并实现高速、稳定的数据传输。它在工业自动机器
    的头像 发表于 05-21 12:13 537次阅读
    工业相机<b class='flag-5'>图像</b>采集卡:<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>的核心枢纽

    EtherCAT科普系列(8):EtherCAT技术在机器视觉领域的应用

    机器视觉是基于软件与硬件的组合,通过光学装置和非接触式的传感器自动地接受一个真实物体的图像,并利用软件算法处理图像以获得所需信息或用于控制机器
    的头像 发表于 05-15 17:09 1279次阅读
    EtherCAT科普系列(8):EtherCAT技术在<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>领域的应用

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    的cv_bridge库,可以轻松实现ROS图像消息与OpenCV格式的转换,这在实际开发中极为便利。 视觉巡线与维码识别的应用 视觉巡线是机器
    发表于 05-03 19:41

    工业自动机器视觉技术的演变和未来发展趋势

    机器视觉是一项使机器或工业设备能够解释和分析视觉数据的技术,它将计算机科学与图像处理技术相结合,实现了自动
    的头像 发表于 03-06 11:39 1648次阅读
    工业自动<b class='flag-5'>化</b>中<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>技术的演变和未来发展趋势

    labview视觉助手 - machine vision - map defects,输出float图像,像素0.89*39496中的0.89是啥意思?

    labview视觉助手 - machine vision - map defects,输出float图像,像素0.89*39496中的0.89是啥意思? 无论是
    发表于 01-04 21:20

    【「具身智能机器人系统」阅读体验】+两本互为支持的书

    最近在阅读《具身智能机器人系统》这本书的同时,还读了 《计算机视觉之PyTorch数字图像处理》一书,这两本书完全可以视为是互为依托的姊妹篇。《计算机视觉之PyTorch数字
    发表于 01-01 15:50