0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于机器视觉的煤中杂物智能分选系统分析与应用

新机器视觉 来源:五六选煤 作者:王卫东,张康辉 2021-04-03 09:47 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

原煤在开采过程中经常会混入各类铁器、锚杆、锚索、网片、破损胶带、电缆头、木材等生产废旧物资。此外,井下作业产生的生活垃圾(如塑料瓶、塑料袋等)也会混入到提升原煤中。煤炭中的杂物极易堵塞管道、溜槽、阀门、筛孔等部件,成为困扰选煤厂连续生产的主要因素之一。煤炭中的杂物,轻则堵塞运输系统,降低脱泥脱介系统效率,发生跑、冒、滴、漏现象;重则可能导致带式输送机划伤或分选设备堵塞,造成设备故障及产品质量事故。如果杂物进入商品煤,在商品煤使用过程中,还有可能会因某种杂物的存在而导致使用设备受损、锅炉爆炸等安全生产事故,从而带来严重的经济损失,甚至造成人员伤亡。杂物的存在还制约了出口煤业务的发展,经常导致不必要的商务纠纷和索赔,给煤炭生产企业造成了不应有的经济损失。

清除煤中的杂物,既是个老问题,又是个新问题。无论是煤炭生产企业还是用煤企业,从未忽视过煤炭中杂物的分拣工作。尤其是近几年来,煤中杂物的分拣问题变得越来越突出,对杂物分拣效果的要求也越来越高。过去的“三吸一筛”效率较低,己无法满足清除煤中各种杂物的要求。

目前,在清除金属杂物方面,采用电磁除铁器的多级除铁方式效果很好。对于煤中的木质杂物,国内外大多采用在工艺系统中设置破碎、筛分等加工环节来分离,也有采用清水立轮分选机、斜轮分选机或槽选机等清除木屑的实例。总体来说,这些方法具有一定效果,但也均存在一些不足。拦杂网、除杂钩等机械装置也是近年来常用的除杂方法,但除杂效率较低,且需要频繁检查和维护除杂装置,应用局限性较大。

为减少商品煤中杂物数量,大多数选煤厂一般在块煤手选带式输送机上设置人工手选环节来拣除杂物,但存在杂物拣除率低,员工劳动强度大,安全系数低等问题。

从我国目前在用的杂物分离设备状况看,效率低、故障多和维修量大是制约煤中杂物分离设备推广使用的主要因素。为了解决杂物对煤炭生产的影响,针对煤中杂物的混杂状况,研究开发了一种基于机器视觉的智能识别与机械手精准抓取的煤中杂物智能分选系统(以下简称“杂物智能分选系统”),并在淮北矿业集团涡北选煤厂得到了成功应用。

1工艺设计

杂物智能分选系统安装在涡北选煤厂的筛分车间内,位于+8.00m平面的2206#转载带式输送机(带长9m,带速0.45m/s)上方,用以代替原机头滚轴筛除杂。杂物智能分选系统工艺布置如图1所示,分选过程如图2所示,现场安装如图3所示。

4fe60668-8e94-11eb-8b86-12bb97331649.jpg

图1 杂物智能分选系统工艺布置图

分选时,原煤经筛孔为80mm的振动筛分级后,筛上物料通过溜槽进入杂物智能分选系统,进入系统的物料首先通过弹性布料装置,由该布料装置将物料松散、均匀地铺在带式输送机上,以方便后续处理。分散均匀的物料随2206#带式输送机进入图像采集系统,由图像采集系统负责对进入相机视野的物料进行拍摄,从而在线获取图像资料,并通过USB光纤上传至图像分析系统。图像分析系统通过机器学习算法,实现物料中杂物(木棍、竹坯子、绳头、棉纱、手套和矿泉水瓶等)的识别及分类,杂物位置和姿态确定(以便后续机械手执行抓取工作),以及物料运动时间确定三个功能,并把这些信息传递给智能控制系统。智能控制系统接收到图像分析系统的信息后,确定机械手的控制策略,启动机械手抓取杂物,当机械手按照设计好的控制执行方案完成抓取目标物体任务后,回到初始位置。

5027ea2e-8e94-11eb-8b86-12bb97331649.jpg

图2 杂物智能分选系统分选过程示意图

图3 杂物智能分选系统现场安装图

2像素级杂物检测模型

杂物智能分选系统采用了基于mobilenetv2的unet模型。unet是一个语义分割模型,其主要执行过程与其他语义分割模型类似:首先,利用卷积进行下采样;然后,提取一层又一层的特征,利用这一层又一层的特征图谱进行上采样;最后,得到一个输出结果图像,该图像的每个像素点均对应一个类别。

主干网络采用轻量化卷积神经网络mobilenetv2进行特征提取,其核心在于深度可分离卷积,即将一个标准卷积用两个独立的分解卷积进行替换,结构如图4所示。第一层称为逐层卷积,它通过对每个输入通道应用单个卷积滤波器来执行轻量级滤波。第二层是1×1卷积,称为逐点卷积,它通过计算输入通道的线性组合来计算新的特征,有助于特征的提取。

mobilenetv2对网络模型进行了有效的压缩,其核心模块结构图如图5所示。标准卷积对大小为hi×wi×di的输入张量,应用卷积核:

k∈Rk×k×di×dj,

产生大小为hi×wi×dj的输出张量,标准卷积层具有hi×wi×di×dj×k×k的计算成本。深度可分离卷积实际上是标准卷积层的插入式重新排列,它的卷积效果几乎和普通卷积一样,但计算代价只有hi×wi×di×(k2+dj)。与传统卷积层相比,高效的深度可分离卷积减少了近乎k2的计算量(实际上是k2dj/(k2+dj))。由于mobilenetv2采用k=3,因此计算成本比标准卷积少8~9倍。基于mobilenetv2的杂物检测模型的网络结构如图6所示。

5149b8b0-8e94-11eb-8b86-12bb97331649.jpg

图4 深度可分离卷积示意图

51ac84c2-8e94-11eb-8b86-12bb97331649.jpg

图5 mobilenet v2核心模块结构图

51daa42e-8e94-11eb-8b86-12bb97331649.jpg

图6 基于mobilenet v2的unet模型网络结构图

3分拣动作方式最优决策

在杂物智能分选系统中,机械手分拣动作控制的最大难点是如何在密集的物料中精准抓取目标杂物,在保障分拣效率的同时,降低机械手故障的可能性。因此,研究杂物检测装置与分拣控制装置的协同作用机制至关重要。

根据杂物类型的不同和带式输送机上物料与杂物的空间关系,将分拣动作方式的最优决策拆解为以下几种情况:

(1) 硬质目标杂物周围无物料干扰。当机械手夹取硬质目标杂物,且杂物周围无其他物料干扰时,由于机械手执行动作时不会受到影响,如果硬质杂物多为棍状杂物,可直接将检测结果最小外接矩形中心点作为夹取点。

(2) 软质目标杂物周围无物料干扰。麻绳等软质杂物在物料传送带上的姿态往往各不不同,当目标杂物的质心与杂物轮廓最小外接矩形中心不重合时,则不能将最小外接矩形的中心点直接作为夹取点。此时,应结合检测装置中的像素级语义分割结果,对掩码部分进行骨架提取,最终将骨架的中心确定为夹取点。

(3) 目标杂物周围有物料干扰。当目标杂物被物料压住,或物料与杂物紧贴时,无论是选择最小外接矩形中心,还是选择目标杂物图像骨架中心作为夹取点,都有可能受到物料影响,轻则使机械手受物料阻挡而导致最终夹空或夹到物料,重则影响机械手正常动作,导致运动控制器报警,影响生产效率。因此,在有物料干扰的情况下确定杂物夹取点的位置,需同时考虑物料位置与杂物位置。可结合深度学习中的目标检测网络,对物料进行统计和定位,得到物料的位置信息与轮廓外接矩形,然后根据物料与杂物的空间关系,将夹取点选择在不受物料影响的骨架区域。

4系统测试分析

4.1测试方法

根据前期杂物智能分选系统的工业调试情况,对系统在不同生产状态下的分拣效果进行了在线测试与分析。测试数据来源于淮北矿业集团涡北选煤厂2019年8月—2020年1月生产期间的调试测试试验与生产测试试验。分拣效果采用了4个评测指标:像素分割准确率、杂物检测准确率、机械手分拣成功率和系统分拣率。

(1) 像素分割准确率采用交并比,即检测模型对杂物预测的结果图像和杂物真实结果图像的交集与并集的比值。该指标可体现模型像素分割的精准度。

(2) 杂物检测准确率即某时间段内模型正确检测到的杂物与杂物总数的比值。该指标可以体现模型杂物检测的准确程度。

(3) 机械手分拣成功率是指机械手在接收到杂物检测结果并执行分拣动作后的拣选动作成功率,用某时间段内机械手成功分拣出的杂物数与检测系统检测到的杂物数的比值表示。该指标可以体现机械手的分拣质量。

(4) 系统分拣率由某时间段内机械手成功分拣出的杂物数与生产线上总杂物数的比值表示。该指标可体现杂物智能分选系统最终的分拣效率。

4.2测试结果分析

在选煤厂生产状态下,针对正常生产、煤泥污染严重和物料堆叠严重三种情况分别进行了测试与分析。

4.2.1 正常生产情况

正常生产时,物料分布均匀,粒度大小适中,堆叠情况较少。正常生产情况下的测试图如图7所示,测试分析结果见表1。

5304b56a-8e94-11eb-8b86-12bb97331649.jpg

图7 正常生产情况下的测试图

表1 正常生产情况下的测试结果

533c6d98-8e94-11eb-8b86-12bb97331649.jpg

4.2.2 煤泥污染严重情况

当工艺生产线前端出现筛分设备堵塞等情况时,会导致系统对杂物的检测难度上升。虽然在生产中此类情况较少,但是为了测试系统的鲁棒性,也单独进行了统计分析。煤泥污染严重情况下的测试图如图8所示,测试分析结果见表2。

53833cbe-8e94-11eb-8b86-12bb97331649.jpg

图8 煤泥污染严重情况下的测试图

表2 煤泥污染严重情况下的测试结果

53fad9ea-8e94-11eb-8b86-12bb97331649.jpg

4.2.3 物料堆叠严重情况

当物料的流量过大或过于集中在杂物周围时,灰度杂物的检测质量和机械手的分拣质量均会受到一定影响。物料堆叠严重情况下的测试图如图9所示,测试分析结果见表3。

55390bec-8e94-11eb-8b86-12bb97331649.jpg

图9 物料堆叠严重情况下的测试图

表3 物料堆叠严重情况下的测试结果

559670fc-8e94-11eb-8b86-12bb97331649.jpg

4.3最终测试结果

根据5个月的测试试验,正常生产、煤泥污染严重和物料堆叠严重三种情况在生产中出现的比例大约为6∶1∶3,故以此为权重对四个评测指标进行综合计算,最终得出:像素分割准确率为90.381%,杂物检测准确率为96.647%,机械手分拣成功率为94.759%,系统分拣率为91.640%。

5结论

(1) 建立了基于语义分割的像素级杂物识别模型,构建了复杂环境条件下机械手精准抓取策略,能够避开干扰物,实现硬质物料和轻质物料抓取点的精确选择。

(2) 基于机器视觉的煤中杂物智能分选系统采用了机器学习的方法,运用人工智能技术在线识别煤中的杂物,并配合后端的机械手执行机构完成杂物的拣选,最终实现了煤中杂物的智能分选。

(3) 煤中杂物智能分选系统是人工智能技术与煤炭分选过程有机结合的成功示范,必将推进人工智能技术在煤炭洗选加工过程中的广泛应用。
编辑:lyn

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器视觉
    +关注

    关注

    163

    文章

    4729

    浏览量

    125014
  • 人工智能
    +关注

    关注

    1813

    文章

    49741

    浏览量

    261566
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236

原文标题:基于机器视觉的煤中杂物智能分选系统研究

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    机器视觉系统工业相机的常用术语解读

    1、机器视觉系统机器视觉系统machinevisionsystem是通过对声波、电磁辐射等时空模式进行探测及感知,对所获取的图像进行自动处理、分析
    的头像 发表于 10-31 17:34 998次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉系统</b><b class='flag-5'>中</b>工业相机的常用术语解读

    XKCON祥控输皮带智能机器人巡检系统对监测数据进行挖掘分析

    XKCON祥控输皮带智能机器人巡检系统通过智能机器人在皮带运行过程
    的头像 发表于 09-15 11:22 415次阅读
    XKCON祥控输<b class='flag-5'>煤</b>皮带<b class='flag-5'>智能</b><b class='flag-5'>机器</b>人巡检<b class='flag-5'>系统</b>对监测数据进行挖掘<b class='flag-5'>分析</b>

    机器视觉系统工业相机的成像原理及如何选型

    机器视觉系统是一种模拟人类视觉功能,通过光学装置和非接触式传感器获取图像数据,并进行分析和处理,以实现对目标物体的识别、测量、检测和定位等功能的智能
    的头像 发表于 08-07 14:14 1021次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉系统</b>工业相机的成像原理及如何选型

    电池自动分选机:自动化与智能化重塑电池产业未来

    电池自动分选机是现代工业中用于电池生产与回收环节的关键设备,其核心功能是通过自动化技术对电池进行快速检测与分类。设备整合了光学检测、电性能测试及机械分选系统,能够根据电池的电压、内阻、容量等参数
    的头像 发表于 06-30 14:48 358次阅读

    集装箱残损智能识别系统——华明视讯的机器视觉创新应用

    的集装箱残损智能识别系统应运而生,通过自动化检测技术实现高效、精准的箱损识别,助力港口、物流企业提升管理效率,降低纠纷风险。 核心技术:高精度视觉分析
    的头像 发表于 06-09 11:47 408次阅读

    VirtualLab:激光引导无焦系统分析与设计

    分析了这种系统的经典设计。然后,通过考虑衍射效应并在系统包括散焦或腰移,可以进一步减小几何光学优化给出的最小光斑尺寸。 建模任务 #1-简单的无焦
    发表于 05-22 08:49

    高光谱相机赋能烟叶分选:精准、高效与智能化的新突破

    烟草产业作为中国重要的经济支柱,烟叶分选的质量与效率直接影响行业效益。传统人工分选存在效率低、主观性强、标准难以统一等问题,而机器视觉技术受限于可见光波段,难以捕捉烟叶深层特征。深圳
    的头像 发表于 05-06 11:03 438次阅读

    2025年机器视觉产业链梳理及投资布局分析

    工业相机是机器视觉系统的核心部件,推动了工业自动化和智能化的发展。
    的头像 发表于 04-22 10:16 768次阅读
    2025年<b class='flag-5'>中</b>国<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>产业链梳理及投资布局<b class='flag-5'>分析</b>

    机器视觉系统如何评价光源的好坏

    从对比度、鲁棒性、亮度、均匀性和可维护性五个方面探讨了光源在机器视觉系统的重要性。
    的头像 发表于 04-14 13:38 504次阅读

    功率放大器在液滴微流控细胞分选中的应用

    领域中的应用,提出了一种利用微通道和微流控芯片实现单细胞分选的新方法,并详细介绍了基于微通道和微流控芯片的单细胞分选系统,包括系统结构、功能以及应用等,最后对该系统的发展趋势进行了展望
    的头像 发表于 04-03 10:08 594次阅读
    功率放大器在液滴微流控细胞<b class='flag-5'>分选</b>中的应用

    圆柱电池自动分选机:电池生产线的智能守护者

    越来越高。而圆柱电池自动分选机,作为电池生产线上的关键设备,正以其高效、精准、智能的特点,成为提升电池生产效率与品质的重要力量。 一、圆柱电池自动分选机的工作原理 圆柱电池自动分选机主
    的头像 发表于 04-01 10:56 518次阅读

    【「具身智能机器系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知
    发表于 01-04 19:22

    【「具身智能机器系统」阅读体验】+两本互为支持的书

    最近在阅读《具身智能机器系统》这本书的同时,还读了 《计算机视觉之PyTorch数字图像处理》一书,这两本书完全可以视为是互为依托的姊妹篇。《计算机
    发表于 01-01 15:50

    【「具身智能机器系统」阅读体验】+初品的体验

    的快速发展,相关人才的需求也在不断增加,通过阅读该书可以帮助大家系统性地了解和分析当前具身智能机器系统的发展现状和前沿研究,为未来的研究和
    发表于 12-20 19:17

    《具身智能机器系统》第1-6章阅读心得之具身智能机器系统背景知识与基础模块

    、谷歌的RT系列等前沿产品展露锋芒。这些突破性成果标志着AI正从虚拟世界迈向物理世界的深度交互。 而研读《具身智能机器系统》前六章,我对具身智能
    发表于 12-19 22:26