0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电机控制算法及其工作原理解析

Qorvo半导体 来源:Qorvo半导体 作者:Qorvo半导体 2021-03-10 15:37 次阅读

简介:消费者要求其家用电器、园艺工具和电机驱动产品动力更强、外形更小、效率更高。像很多消费类电子产品一样,消费者也期望这些产品成本更低、更可靠且易于使用。无刷直流(BLDC)电机有助于满足这些需求。为满足这一需求,需要完全优化、高度集成的片上系统(SOC)设备。当今的 SOC 设备是完全可编程电机控制器,可提供高效、结构紧凑的解决方案,有助于满足 21 世纪制造商对绿色能源效率的严格要求。本书详细介绍了关于这些 SOC 如何提高效率以及在何处使用的宝贵信息

本书是针对技术和非技术类读者而编写的。如果您是行政人员、销售员或设计工程师,本书均适合您。只要您对直流电机控制器电源管理怀有好奇心,即可阅读本书。在前两章《电机科普系列丨直流电机控制器基础》和《电机科普系列丨了解电机控制装置》里,我们对其进行了基本的科普,今天的报道我们将深入探讨一下电机控制算法

本章中,您将了解电机控制算法及其工作原理,还将了解各领域的一些实际范例。

算法是一组为执行特定任务而设计的指令。计算机程序本质上是多组算法。

在无刷直流 (BLDC) 电机 / 永磁同步电机 (PMSM) 中,软件算法通过监测和控制电机操作来提高效率并降低运行成本。在带传感器的无刷直流电机 /永磁同步电机中,主要算法的一些最重要的功能如下:

电机初始化

霍尔传感器转子位置检测

检查开关信号是增加电流基准还是减少电流基准

检查电机旋转方向

了解控制器如何处理传感器信息

无刷直流电机定子有三个霍尔传感器,各相彼此相隔 120 度(参见第 2 章)。当它们的数字输出数据合并在一起时,会产生一个代表转子位置的三位数字。

如图 3-1 所示,可用三位代码代表 1 到 6 之间的操作码。三相无刷直流电机有六种状态(从三相输出得出的六种可能的电流状态)。传感器利用八个操作码中的六个(1 到 6)生成三位数的数据输出。该信息很有用,因为控制器可确定何时发出了非法操作码(0 和 7),并根据合法操作码(1 到 6)执行动作。

阅读图 3-1 中的查找表的方法如下:

当霍尔传感器W、V、U等于操作码1-0-1、操作码5时,扇区0激励。

当霍尔传感器W、V、U等于操作码1-0-0、操作码4时,扇区1激励。

依此类推,可获得其他各种可能的状态。

各个霍尔传感器都位于转子上,因此每个转子扇区都会出现一个变化状态。如图 3-1 所示,该算法会获取霍尔传感器操作码并对其进行解码。一旦霍尔传感器操作码的值发生变化,控制器就必须更改激励方案以实现换向。微控制器利用操作码从查找表中提取激励信息。三相逆变器通过新扇区命令激励后,磁场移动至新位置,从而推动转子。电机运行时,此过程不断重复。

了解脉冲宽度调制

有些电机仅需要一个速度,因此它们只需要恒定直流电压进入逆变器,如图3-1 所示。但是,如今许多产品,其中包括很多电动工具和园艺工具,都需要变速电机。这种电机利用脉冲宽度调制(PWM)来改变电机速度。脉宽调制可精准控制电机速度和扭矩,从而实现变速。

宽调制(PWM)是具有恒定频率的方波信号,如图 3-2 所示。脉宽调制将逆变器直流电压转换为调制后的有效电压。例如,利用占空比为 0% 到100% 的脉宽调制控制信号,可使用 12 伏电池向电机施加 0 伏到 12 伏的任何电压。算法利用这种控制方法来有效限制启动电流以及调节电机速度和扭矩。

脉宽调制开关频率是电源开发阶段必须牢记的重要设计因素。提高开关频率会增加开关损耗,但可改善低电感电机中的电流稳定度。降低开关频率会增加电流纹波,电流纹波将转化为扭矩纹波(例如振动)。应用电压和电机电感将引导设计人员选择正确的脉宽调制开关频率。根据经验,电压或电流越高,所需要的开关频率就越低。

持续改变脉宽调制信号会改变占空比,如图 3-3 所示。它给出了一系列电压值,而这反过来又会改变电机速度。您可利用这些脉宽调制占空比的变化来改变进入电机绕组的电压。

识别无刷直流电机 / 永磁同步电机典型应用

本节中,我们将探讨无刷直流电机 / 永磁同步电机在电动工具、园艺工具、白色家电和车辆等关键产品类型中的某些常见用途。

电动工具

电池(尤其是经久耐用的高能量密度电池)供电的无绳电动工具让用户能够灵活自由地使用。这种便捷和自由促使该领域迅速转向无刷直流电机 /永磁同步电机。

传统上,电动工具由通用交流 / 直流有刷电机、开关或电位计以及将其与电源插座连接的电线构成。在将近一个世纪的时间里,人们利用这种方法设计出了种类繁多的电动工具。但是,在无绳电动工具中,必须考虑操作时间,因为操作时间受到电池性能的限制。钻孔机、圆锯及其他类似工具需要在负载下启动,因此它们使用传感器和基于传感器的算法,其中大多数使用无刷直流电机和六步梯形换向方案。

但是,其他很多电动工具(如磨床和摆锯)以及诸如吹叶机、割草机和绿篱机等绝大多数园艺工具也采用无传感器算法。设计师一直在寻求提高电动工具性能的方法,因此,永磁同步电机和磁场定向控制(FOC)开始出现在成本更高、性能更高的电动工具中。

园艺工具

园艺工具包括割草机、打边机、链锯、吹叶机以及切边机。它们可能看起来属于电动工具,但传统的电动工具(如钻孔机和锯)是电力驱动,而园艺工具大多由燃气内燃机提供动力,我们的工具房里偶尔也有带电线的园艺工具。

可靠的电池供电的园艺工具普及较慢。它们大约在二三十年前就已出现,但因功能薄弱而并不引人注意。但是,随着无刷直流电机 / 永磁同步电机和高压电池领域的技术进步,它们的命运已发生逆转!如今的园艺工具采用 40 伏到 80 伏电池技术,其性能与燃气动力同类产品的性能一样出色。这么高的电压甚至足以使无刷直流电机 / 永磁同步电机为拖拉机式割草机提供动力!

白色家电

白色家电行业为我们提供了很多家用电器,如冰箱、洗衣机和烘干机、真空吸尘器以及吊扇。传统上,所有这些电器都使用不需要专用驱动器 / 控制器的交流感应电机。但是,随着节电措施的出现以及用户对某些家电变速的需求,交流感应电机已逐步被无刷直流电机 / 永磁同步电机取代。

在冰箱中,压缩机、风机和水泵均已改用无刷直流电机 / 永磁同步电机。这些电器已纳入绿色能源计划中,所以节能至关重要。与此同时,在家庭环境中尽可能地减少振动和噪音,也是大家非常期待的。凭借采用磁场定向控制(FOC)换向的低纹波永磁同步电机,现在的冰箱不仅更节能、更可靠,而且还更加安静,在室内使用也不再令人厌烦。吊扇、抽油烟机和真空吸尘器也利用了这些先进技术。

汽车行业

您所拥有的机器中,电机数量最多的一台机器最可能是您的运输机器——汽车!电动座椅、电动窗、电动后视镜、门锁、雨刮、水泵、油泵、风扇、鼓风机等等。您的汽车的各个位置可能装配有二十几个到多达 50 个电机,它们都需要被驱动和控制。

传统上,汽车中的所有电机都是简单的有刷直流电机。但是,人们对能源使用和气候变化的担忧预示着一个注重节能的新时代的到来。以热量形式耗散的能源必须通过燃烧更多的化石燃料产生,因此使用更高效的电机可减少碳足迹。即使每个电机仅能节省相对较少的能源,但如果将其乘以每辆汽车中电机的数量以及全球大约有 14 亿辆汽车这一实际数字,便可明显看出,把有刷直流电机换成无刷直流电机 / 永磁同步电机意义重大。

原文标题:电机科普系列丨了解电机控制算法

文章出处:【微信公众号:Qorvo半导体】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2522

    文章

    47984

    浏览量

    739693
  • 电机控制
    +关注

    关注

    3463

    文章

    1697

    浏览量

    264266

原文标题:电机科普系列丨了解电机控制算法

文章出处:【微信号:Qorvo_Inc,微信公众号:Qorvo半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【年度精选】2023年度top5榜单——电机控制资料

    推荐理由: 这是一份关于PID闭环控制算法解析资料,内容深入浅出,易于理解。通过这份资料,你可以全面了解PID控制
    发表于 01-16 14:34

    AC电机控制算法是什么

    (AC)是一种将电能转换为机械能的设备,其工作原理是通过电流在磁场中产生力矩,使电机转子旋转。AC电机控制算法的核心目标是实现对
    的头像 发表于 01-11 11:21 347次阅读
    AC<b class='flag-5'>电机</b><b class='flag-5'>控制</b><b class='flag-5'>算法</b>是什么

    电机控制算法及其工作原理

    如今主要有如下几种类型的电机 :有刷直流电机、步进电机、感应电机以及无刷直流(BLDC)电机 / 永磁同步
    发表于 12-26 10:02 541次阅读
    <b class='flag-5'>电机</b><b class='flag-5'>控制</b><b class='flag-5'>算法</b><b class='flag-5'>及其</b><b class='flag-5'>工作原理</b>

    力矩电机工作原理是什么

    工作原理非常重要,它决定了电机的性能和特点。本文将详细介绍力矩电机工作原理,包括其结构组成和工作过程。通过对力矩
    的头像 发表于 12-20 09:38 974次阅读

    电机驱动电路工作原理

    电机驱动电路的工作原理 电机驱动电路是控制电机运行的核心部分,其工作原理涉及到
    的头像 发表于 12-13 10:54 2334次阅读

    鉴频鉴相器的工作原理解析

    在这篇文章中,我们将介绍鉴频鉴相器(PFD)的工作原理
    的头像 发表于 11-22 14:49 2067次阅读
    鉴频鉴相器的<b class='flag-5'>工作原理解析</b>

    滑差电机工作原理、结构及特点

    滑差电机是一种广泛应用于工业领域的电机,它具有独特的工作原理和结构,能够实现精确的转速控制和调节。本文将详细介绍滑差电机
    的头像 发表于 11-21 17:14 1951次阅读

    HASH算法加密芯片的工作原理及其在STM32 MCU上的应用

    本文主要研究了HASH算法加密芯片的工作原理及其在STM32 MCU上的应用,实现了外部加密芯片对STM32 MCU的程序保护,目前的技术手段无法对其进行破解,其安全性优于其它加密方式。
    的头像 发表于 10-24 15:01 1615次阅读
    HASH<b class='flag-5'>算法</b>加密芯片的<b class='flag-5'>工作原理</b><b class='flag-5'>及其</b>在STM32 MCU上的应用

    扁线电机与圆线电机的区别是什么 扁线电机工作原理

    扁线电机和圆线电机工作原理本质上没有区别,都是通过电流在磁场中受力作用产生转动。不同之处在于,扁线电机采用扁平的矩形导线而不是传统的圆形导线。这样做有什么好处呢?我们可以用一个简单的
    发表于 09-12 10:43 970次阅读
    扁线<b class='flag-5'>电机</b>与圆线<b class='flag-5'>电机</b>的区别是什么 扁线<b class='flag-5'>电机</b>的<b class='flag-5'>工作原理</b>

    全覆盖路径规划算法(CCPP)工作原理解析

    根据CCPP算法工作原理不同,可以分为随机碰撞法、单元分解法、生物激励法、模板法、智能算法等,但CCPP算法都应该满足覆盖必须满足的要求。
    发表于 08-25 10:31 896次阅读
    全覆盖路径规划<b class='flag-5'>算法</b>(CCPP)<b class='flag-5'>工作原理解析</b>

    步进电机基础知识:类型、用途和工作原理

    本文将为您介绍步进电机的基础知识,包括其工作原理、构造、控制方法、用途、类型及其优缺点。
    的头像 发表于 08-02 17:53 923次阅读
    步进<b class='flag-5'>电机</b>基础知识:类型、用途和<b class='flag-5'>工作原理</b>

    伺服电机的引脚图/工作原理/应用

    伺服电机具有独特的特性,即根据输入信号的脉冲宽度转向特定角度(0,90,180)。这些伺服电机广泛用于机器人应用、机械控制等。通常微控制器将用于控制
    的头像 发表于 06-29 15:44 1803次阅读
    伺服<b class='flag-5'>电机</b>的引脚图/<b class='flag-5'>工作原理</b>/应用

    什么是安全光栅?工作原理及应用领域解析

    什么是安全光栅?工作原理及应用领域解析
    的头像 发表于 06-29 09:45 1118次阅读
    什么是安全光栅?<b class='flag-5'>工作原理</b>及应用领域<b class='flag-5'>解析</b>

    什么是安全光栅?工作原理及应用领域解析

    什么是安全光栅?工作原理及应用领域解析
    的头像 发表于 06-24 10:19 1061次阅读
    什么是安全光栅?<b class='flag-5'>工作原理</b>及应用领域<b class='flag-5'>解析</b>

    无刷电机控制器和电机控制工作原理详解

    电机控制工作原理详解 电机控制器是控制电动机运行的关键部件,通过对
    的头像 发表于 06-08 11:38 2895次阅读