0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于PCB的设计经验 干货满满笔记本准备好!

智能物联研习社 来源:智能物联研习社 作者:智能物联研习社 2021-09-28 16:56 次阅读

关于PCB的设计经验,看这边~干货满满!笔记本准备好~

1、如果设计的电路系统中包含FPGA器件,则在绘制原理图前必需使用Quartus II软件对管脚分配进行验证。(FPGA中某些特殊的管脚是不能用作普通IO的)

2、4层板从上到下依次为:信号平面层、地、电源、信号平面层;6层板从上到下依次为:信号平面层、地、信号内电层、信号内电层、电源、信号平面层。6层以上板(优点是:防干扰辐射),优先选择内电层走线,走不开选择平面层,禁止从地或电源层走线(原因:会分割电源层,产生寄生效应)。

3、多电源系统的布线:如FPGA+DSP系统做6层板,一般至少会有3.3V+1.2V+1.8V+5V。

3.3V一般是主电源,直接铺电源层,通过过孔很容易布通全局电源网络。

5V一般可能是电源输入,只需要在一小块区域内铺铜。且尽量粗(你问我该多粗——能多粗就多粗,越粗越好)

1.2V和1.8V是内核电源(如果直接采用线连的方式会在面临BGA器件时遇到很大困难),布局时尽量将1.2V与1.8V分开,并让1.2V或1.8V内相连的元件布局在紧凑的区域,使用铜皮的方式连接,如下图:

总之,因为电源网络遍布整个PCB,如果采用走线的方式会很复杂而且会绕很远,使用铺铜皮的方法是一种很好的选择!

4、邻层之间走线采用交叉方式:既可减少并行导线之间的电磁干扰(高中学的哦),又方便走线(参考资料1)。如下图为某PCB中相邻两层的走线,大致是一横一竖。

5、模拟数字要隔离,怎么个隔离法?布局时将用于模拟信号的器件与数字信号的器件分开,然后从ad芯片中间一刀切!

模拟信号铺模拟地,模拟地/模拟电源与数字电源通过电感/磁珠单点连接。

6、基于PCB设计软件的PCB设计也可看做是一种软件开发过程,软件工程最注重“迭代开发”的思想,我觉得PCB设计中也可以引入该思想,减少PCB错误的概率。

(1) 原理图检查,尤其注意器件的电源和地(电源和地是系统的血脉,不能有丝毫疏忽)

(2) PCB封装绘制(确认原理图中的管脚是否有误)

(3) PCB封装尺寸逐一确认后,添加验证标签,添加到本次设计封装库

(4) 导入网表,边布局边调整原理图中信号顺序(布局后不能再使用OrCAD的元件自动编号功能)

(5) 手工布线(边布边检查电源地网络,前面说过:电源网络使用铺铜方式,所以少用走线)

总之,PCB设计中的指导思想就是边绘制封装布局布线边反馈修正原理图(从信号连接的正确性、信号走线的方便性考虑)。

7、晶振离芯片尽量近,且晶振下尽量不走线,铺地网络铜皮。多处使用的时钟使用树形时钟树方式布线。

8、连接器上信号的排布对布线的难易程度影响较大,因此要边布线边调整原理图上的信号(但千万不能重新对元器件编号)

9、多板接插件的设计:

(1) 使用排线连接:上下接口一致

(2) 直插座:上下接口镜像对称

10、模块连接信号的设计:

(1) 若2个模块放置在PCB同一面,如下:管教序号大接小小接大(镜像连接信号)

(2) 若2个模块放在PCB不同面,则管教序号小接小大接大

这样做能放置信号像上面的右图一样交叉。当然,上面的方法不是定则,我总是说,凡事随需而变(这个只能自己领悟),只不过在很多情况下按这种方式设计很管用罢了。

11、电源地回路的设计:

76eee85708474f70b2f425990ebac199~tplv-tt-shrink:640:0.image

上图的电源地回路面积大,容易受电磁干扰

e4e43f541d1a40c690faf32ab4e0216c~tplv-tt-shrink:640:0.image

上图通过改良——电源与地线靠近走线,减小了回路面积,降低了电磁干扰(679/12.8,约54倍)。因此,电源与地尽量应该靠近走线!而信号线之间则应该尽量避免并行走线,降低信号之间的互感效应。

原帖来源:link.zhihu.com/?target=https%3A//bbs.elecfans.com/jishu_528858_1_1.html

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    182

    文章

    16553

    浏览量

    244713
  • dsp
    dsp
    +关注

    关注

    544

    文章

    7682

    浏览量

    344363
  • pcb
    pcb
    +关注

    关注

    4220

    文章

    22472

    浏览量

    385787
  • 封装
    +关注

    关注

    123

    文章

    7278

    浏览量

    141096
  • 模拟信号
    +关注

    关注

    8

    文章

    961

    浏览量

    51842
收藏 人收藏

    评论

    相关推荐

    集特特种加固笔记本

    笔记本
    jf_10805031
    发布于 :2024年04月25日 14:44:05

    飞腾超薄笔记本#笔记本

    笔记本
    jf_67464575
    发布于 :2024年04月03日 13:57:11

    国产 飞腾FT2000笔记本#国产笔记本 #飞腾FT2000笔记本

    笔记本龙芯
    jf_32772783
    发布于 :2024年04月03日 11:30:52

    集特GEC-3003龙芯3A6000笔记本视频详细介绍#笔记本 #性能高

    笔记本显卡
    jf_67464575
    发布于 :2024年03月28日 16:56:16

    思道SEEKBOOC新款笔记本

    笔记本
    jf_69621499
    发布于 :2024年03月23日 08:54:47

    LTC6820或CN0410设计中的哪一个已经准备好进行CISPR25_2016_6.5 EMI测试?

    我想知道LTC6820演示板或CN0410(实验室电路)设计中的哪一个已经准备好进行CISPR25_2016_6.5 EMI测试? 有什么检测报告供我参考吗?或是有没有任何的设计建议方案可以通过CISPR25 1MHZ EMI 测试 谢谢
    发表于 01-05 07:17

    首批RISC-V笔记本电脑ROMA成功交付,全球首次实现RISC-V技术在笔记本电脑领域的商业落地!

    近日,由深度数智推出的第一批RISC-V笔记本电脑ROMA成功交付客户,全球首次实现RISC-V技术在笔记本电脑领域的商业落地! 本次交付的ROMA笔记本电脑搭载赛昉科技昉·惊鸿-7110 SoC
    发表于 08-21 13:41

    工业物联网的入场券 新唐帮您准备好

    工业物联网的入场券 新唐帮您准备好
    的头像 发表于 08-11 14:50 343次阅读
    工业物联网的入场券 新唐帮您<b class='flag-5'>准备好</b>了

    99.【笔记本维修厮】老厮透露自己的笔记本修理秘籍 #硬声创作季

    笔记本
    充八万
    发布于 :2023年07月19日 18:47:14