0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浙大科学家全球首次突破光学拓扑绝缘体研究,剑指6G

hl5C_deeptechch 来源:DeepTech深科技 作者:DeepTech深科技 2021-01-12 10:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

31 岁的杨怡豪,负笈南洋求学之后,带着博后期间的“颠覆级”成果,毅然选择回到母校浙江大学工作。 2020 年末,其凭借首次实验实现三维光学拓扑绝缘体、实现基于太赫兹拓扑光学的片上通信以及在特制的三维声子晶体中首次观测到了自旋为 1 的外尔点等重大突破,浙江大学百人研究员杨怡豪成功入选《麻省理工科技评论》“35 岁以下科技创新 35 人” 2020 年中国区榜单。

“光” 与 “拓扑” 是杨怡豪研究的关键词,从读博开始,杨怡豪便开始从事与光学有关的研究。博士后研究期间,杨怡豪开始选择拓扑光学作为自己的研究方向。 拓扑绝缘体:继石墨烯之后的”Next Big Thing” 拓扑,是英文单词 Topology 的中文音译。Topology 原本是一个数学分支,其主要研究几何图形或空间、在连续变化下维持不变的性质,“莫比乌斯环” 就是一种很有意思的拓扑结构。

在拓扑物理学中,最火热的研究概念莫过于拓扑绝缘体,自 2007 年被发现以来,逐渐成为了凝聚态物理领域的一个新热点,并被认为是继石墨烯(2010 年诺贝尔物理学奖)之后的”Next Big Thing”,它对基础物理的理解以及半导体器件的应用都有很大的价值。 2016 年,大卫・索利斯、邓肯・霍尔丹和迈克尔・科斯特利茨共同获得了诺贝尔物理学奖,以表彰他们在理论上发现了物质的拓扑相变和拓扑相。该领域最简单的应用是电子拓扑绝缘体,简单说就是一个有特殊结构的绝缘体,表层材料经特殊处理后可允许电子通过,而其内部是绝缘体还可防止漏电,制备出的器件功耗较低,因此在半导体器件上有着潜在应用价值。

而拓扑光学是一个新兴的方向,它将拓扑自由度引入光学系统,从根本上改变人们对光的认识和利用。杨怡豪告诉 DeepTech :“其实,光学拓扑绝缘体是电子拓扑绝缘体的泛式,它将电子拓扑绝缘体的概念运用到光学上。” 光学拓扑绝缘体(PTI,Photonic Topological Insulators)是对电子拓扑绝缘体的模拟,最直接的性质就是作为光的 “绝缘体”—— 不透光,但是边界却可以导光,即可以支持一种表面波模式。 因此,光学拓扑绝缘体能做成具有特殊功能的波导来传递光信号,例如有些光学拓扑绝缘体的表面波有单向传播的特性,所以当它遇到障碍物时不会被反射,可以用来做成对杂质和缺陷免疫的波导。

图 | 光学拓扑绝缘体,它的表面态可以对缺陷和障碍物免疫(来源:杨怡豪) 当然以上只是光学材料的表象,更深层的物理在于其能带的拓扑特性。虽然能带理论早已经被引入光学,并诞生了光子晶体,但是此前人们更关注的是光子晶体能带的特征值、即色散曲线。直到在受凝聚态的影响之下,人们才注意到能带的特征向量,即本征模式。 首次三维光学拓扑绝缘体实验验证

前文提到的诺奖得主邓肯・霍尔丹,是最早提出光学拓扑绝缘体的科学家之一。2005 年,霍尔丹试图将拓扑绝缘体的理论拓展到光学体系,这一大胆想法曾引起质疑与争议,论文直到 2008 年才发表在物理学顶刊 PRL 上,光学拓扑绝缘体的理论暌违三年终于正式问世。 2009 年,MIT 物理系科学家 Zhen Wang 和 Yidong Chong,首次通过实验实现了二维光学拓扑绝缘体,开启了光学拓扑绝缘体的实验研究,相关论文发表在 Nature 上。然而,光学拓扑绝缘体的实验研究,依然局限于二维空间,三维空间的相关研究尚属空白。

2019 年,杨怡豪等人在 Nature 上发表文章《三维光子拓扑绝缘体的实现》 “Realization of a three-dimensional photonic topological insulator” ,以成功的实验验证了三维光学拓扑绝缘体的研究成果,而这也是世上的首次。 文章中,杨怡豪等人提出了宽频带三维光学拓扑绝缘体的设计方法,实验中他们创造性地采用有极强双各向异性的开口谐振器构造单元结构,实现了极宽的三维光学拓扑带隙,并探索了一套针对于三维拓扑光学绝缘体的测试方法,进而观测到一种关键特征 —— 三维完全带隙及二维表面狄拉克锥。 此外,研究团队基于三维光学拓扑绝缘体,研制了一种可对弯折曲面 “免疫” 的新型电磁波导。杨怡豪等人在实验中也验证了在三维光学拓扑绝缘体表面,光能绕过拐角实现高效地传播,这一现象被称作“Z 型三维世界光子的高速公路”。

文章的通信作者之一、浙江大学陈红胜教授,是杨怡豪博士时期的导师,也是后者入选《麻省理工科技评论》“35 岁以下科技创新 35 人” 2020 年中国区榜单的推荐人之一,他对于这项研究表示:“这便是‘光子高速公路’的神奇之处。在这条高速公路上,无论道路多么曲折,光子都能一往无前。” 在物理层面上,该成果率先把三维拓扑绝缘体从费米子体系拓展到了玻色子体系;在应用层面上,它实现了一个宽带隙三维光学拓扑绝缘体,对三维拓扑光路、光学腔、激光等应用有着极为重要的意义。该成果发表于Nature,并被 Physics World、Phys.org、科学网、国家自然基金委等平台报道,且入选为2019 年中国光学十大进展(基础类)、2019 年中国光学领域十大社会影响力事件。科学最后应当走向应用

业余的杨怡豪还是一位知乎答主,他曾回答过“什么是光学拓扑绝缘体” 的问题,并成为 “专业认证” 的高赞回答。对于自己的研究领域,他表示:“我个人觉得,人们已经开始对纯粹的新概念有些厌倦,光学拓扑绝缘体需要找到更多更好的应用。所以,从这个角度来说,光学拓扑绝缘体已经进入下半场,未来将会有更多做应用的人加入进来。” 在拓扑光学的应用上,他已经有所建树,其开发了基于太赫兹拓扑光学的片上通信,对于实现可集成、高稳健性、低成本、高效的太赫兹片上波导有着重要意义,有望应用于下一代 6G 移动通信网络物联网、芯片内及芯片间互联(intra-/inter-chip interconnect)和太赫兹集成电路等。 太赫兹电磁波频率在0.1 至 10 太赫兹之间,随着人们对高速通信日益增长的需求,太赫兹波由于能够提供更宽的带宽,也越来越被重视。

但是,目前的太赫兹波导难以满足上述重大应用需求。基于此,杨怡豪等人将拓扑光学引入到太赫兹波,提出了太赫兹拓扑光学的概念,并设计实现了一种可集成、低损耗、高稳健性、低色散、单模的片上太赫兹拓扑波导。由于该波导的优良性能,研究团队实现了高达 10 Gbit/s 的太赫兹片上通信,并进一步实现了无压缩 4K 高清影像的实时传输,其开拓了太赫兹拓扑光学方向,基于拓扑光学的太赫兹器件的通信速率可进一步提高至 1 Tbit/s。该成果发表在国际顶级光学期刊Nature Photonics,对无人驾驶、精密加工、全息通信、物联网等应用极为重要。

下一阶段,剑指 6G 日后,其研究工作将围绕针对 6G 无线通信的应用展开,他想将太赫兹光源、探测器天线等集成到太赫兹光学拓扑绝缘体平台,开发出能够产生、调制、接收、解调的太赫兹无线收发器件,实现 100 Gbit/s 以上的无线通信速度。另一方面,针对太赫兹芯片内 / 芯片间互联,杨怡豪将开发基于光学拓扑绝缘体的太赫兹互联技术,实现芯片内 / 芯片间 20 Gbit/s 以上的高速通信。 如今,杨怡豪博士结束了在新加坡南洋理工大学(NTU)的博士后工作,并已回国继续从事科研。 NTU 的张柏乐教授,是杨怡豪的老师。前者是2012 年《麻省理工科技评论》全球 “35 岁以下科技创新 35 人”的上榜者,8 年之后杨怡豪“接棒”该榜单,或许是这对师生互相致敬的最好方式。

原文标题:曾入选“中国光学十大进展”!31岁浙大科学家全球首次突破光学拓扑绝缘体研究,太赫兹互联技术剑指6G

文章出处:【微信公众号:DeepTech深科技】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    336

    文章

    29985

    浏览量

    258335
  • 通信
    +关注

    关注

    18

    文章

    6318

    浏览量

    139569
  • 6G
    6G
    +关注

    关注

    7

    文章

    509

    浏览量

    43871

原文标题:曾入选“中国光学十大进展”!31岁浙大科学家全球首次突破光学拓扑绝缘体研究,太赫兹互联技术剑指6G

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    6G通信会是哪种形态

    6G通信将突破传统移动通信范畴,呈现 通感算智深度融合、空天地一全域覆盖、服务对象与场景全面拓展 的形态,具体表现为以下核心特征与技术方向: 一、技术融合:通信、感知、计算、智能一
    的头像 发表于 12-02 09:31 150次阅读

    6G:中国领跑全球的“万物智联“新纪元

    当5G还在持续深化行业应用时,全球通信产业的目光已投向下一代移动通信技术——6G。工业和信息化部消息,我国已连续四年组织开展6G技术试验,目前已完成第一阶段
    的头像 发表于 11-26 11:20 157次阅读

    科学家利用微波激光照射钻石,制造出时间准晶体

    科学家利用微波激光照射钻石,制造出时间准晶体。 美国华盛顿大学、麻省理工学院和哈佛大学科学家携手,成功在钻石上“雕刻”出一种全新的物质形态:时间准晶体。这项突破有望为量子计算、精确计时等领域带来
    的头像 发表于 11-19 07:35 49次阅读
    <b class='flag-5'>科学家</b>利用微波激光照射钻石,制造出时间准晶体

    AI、量子通信与JCAP:6G时代的“三位一“革命

    100%的覆盖可靠性 然而,这些数字背后隐藏着更深层的挑战: 太空与地面的无缝连接 绝对安全的信息传输 厘米级的实时定位 要实现这些突破,仅靠单点技术创新已无法满足需求。AI、量子通信和联合通信与定位(JCAP)三大技术的深度融合,正在构建6G的"三位一
    的头像 发表于 11-07 11:11 278次阅读
    AI、量子通信与JCAP:<b class='flag-5'>6G</b>时代的“三位一<b class='flag-5'>体</b>“革命

    6G技术在哪些领域会得到应用

    6G技术作为第六代移动通信标准,将在多个领域得到广泛应用,其核心优势在于通感算智深度融合、空天地一全域覆盖,以及从“单一通信服务”到“一站式按需服务”的跨越。以下是6G技术的主要应用领域及具体场景
    的头像 发表于 11-05 17:21 922次阅读

    国际类脑计算科学家Yulia Sandamirskaya教授加盟时识科技

    近日,国际类脑计算与神经形态机器人领域知名科学家Yulia Sandamirskaya 教授,作为科学家顾问正式加入时识科技(SynSense)。
    的头像 发表于 10-13 13:50 448次阅读

    AI赋能6G与卫星通信:开启智能天网新时代

    \"天-地-空\"一化的无缝网络: 全球覆盖:卫星提供广域覆盖,6G提供高速率、低延迟的地面接入,AI实现智能调度 无缝切换:当用户从地面网络移动到卫星覆盖区域时,AI确保切换过程平滑
    发表于 10-11 16:01

    5G6G:从“万物互联“到“智能无界“的跨越

    :使用毫米波、太赫兹(THz)甚至光谱范围 部署:空天地一化网络架构 6G的关键技术特征 超高速率与超低延迟:实现1微秒级延迟,为远程手术、全息通信等应用提供支持 AI深度融合:6G将与人工智能深度
    发表于 10-10 13:59

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    AI被赋予了人的智能,科学家们希望在没有人类的引导下,AI自主的提出科学假设,诺贝尔奖级别的假设哦。 AI驱动科学被认为是科学发现的第五个范式了,与实验
    发表于 09-17 11:45

    高压放大器:弹性拓扑绝缘体弹性波技术研究的关键技术应用

    二阶弹性拓扑绝缘体(SETI)在材料科学和凝聚态物理领域中是一个较新的概念,它结合了拓扑绝缘体的特性与弹性理论。二阶
    的头像 发表于 08-12 11:12 535次阅读
    高压放大器:弹性<b class='flag-5'>拓扑</b><b class='flag-5'>绝缘体</b>弹性波技术<b class='flag-5'>研究</b>的关键技术应用

    一文详解绝缘体上硅技术

    绝缘体上硅(SOI)技术作为硅基集成电路领域的重要分支,其核心特征在于通过埋氧层(BOX)实现有源层与衬底的电学隔离,从而赋予场效应晶体管独特的电学特性。
    的头像 发表于 07-28 15:27 1744次阅读
    一文详解<b class='flag-5'>绝缘体</b>上硅技术

    紫光展锐亮相2025全球6G技术与产业生态大会

    近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一化与数字低空”平行论坛,并从
    的头像 发表于 04-18 16:34 1020次阅读

    是德科技与马拉加大学共建6G研究创新实验室

    近日,全球领先的测试测量解决方案提供商是德科技与西班牙马拉加大学(UMA)强强联手,共同宣布成立一所专注于6G研究与创新的实验室。这一合作旨在汇聚双方的技术专长和资源,共同应对6G技术
    的头像 发表于 02-17 10:04 838次阅读

    6G,为什么会选择THZ频段?

    6G目前处于非常早期的研究阶段。国际电信联盟所期待的“网络2030”愿景正在逐步实现。虽然该行业距离进入6G标准开发进程还有几年的时间,但亚太赫兹(sub-THz)技术已经成为研究的重
    的头像 发表于 12-25 15:19 1441次阅读
    <b class='flag-5'>6G</b>,为什么会选择THZ频段?

    西湖大学:科学家+AI,科研新范式的样本

    ,创新科研新范式。这一点在西湖大学的科研项目中已得到体现。 成立于2018年的西湖大学是由施一公院士领衔创办的、聚焦前沿科学研究研究型大学,该校鼓励科学家们探索AI与各学科交叉融合,为科研创新提速。为此,西湖大学在浪潮信息等企
    的头像 发表于 12-12 15:59 850次阅读
    西湖大学:<b class='flag-5'>科学家</b>+AI,科研新范式的样本