0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Imagination发布其最新一代IMG Series4神经网络加速器产品

Dbwd_Imgtec 来源:半导体行业观察 作者:半导体行业观察 2020-12-14 16:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

随着智能驾驶和自动驾驶等应用越发火热,汽车AI芯片市场在最近几年进入了高速发展期。无论是NXP瑞萨这样的传统汽车芯片厂,还是如英伟达英特尔这样的消费芯片大厂,甚至是FPGA龙头Xilinx,都对这个市场虎视眈眈。此外,国内外也有一大波初创芯片企业涌入这个市场。 Imagination作为全球半导体IP大厂,已推出多代AI加速产品,获得了良好的市场反响,可以为汽车芯片厂商打造高性能车用AI芯片提供强有力的支持。日前,Imagination发布其最新一代IMG Series4神经网络加速器(NNA)产品,该公司视觉和人工智能部门高级总监Andrew Grant在接受媒体采访时指出:“虽然目前市场上已经有能满足自动驾驶需求的AI芯片,但功耗不够理想。所以,我们花两年时间去了解和评估客户需求,推出了高性能低功耗的4系列NNA产品,并且将自动驾驶作为主打市场”。

Andrew Grant还介绍道,IMG Series4 NNA采用了全新的多核架构,能提供高达600 TOPS的算力,从而为ADAS和自动驾驶等应用提供高效支持。Imagination之所以能提供性能如此强悍的产品,得益于公司多年来在IP领域的深厚积累。

IP专家的步步为“赢”

在谈及Imagination的时候,大家首先想到的就是他们在手机GPU IP市场的影响力。

从Imagination提供的数据也可以看到,他们在移动GPU IP市场的份额已经达到35.5%,这帮助他们超越Arm Mali系列和高通Adreno系列,登上移动GPU IP龙头的位置。除了移动GPU以外,Imagination在车载GPU IP市场也几乎拿下了半壁江山。数据显示,他们在这个市场的占有率高达43%。

此外,Imagination在近来热门的AI 市场也布局多年。据介绍,Imagination在过去七年里持续加大对AI研发的投入,公司迄今已拥有超过80项针对AI领域的专利,并推出了一系列神经网络加速器IP产品。 这系列IP是一个从0开始设计的完整、独立式的硬件IP神经网络加速器,可以同时支持CNN、RNN、LSTM三种神经网络类型,并且可支持caff、caffe2、Google TensorFlow等通用机器学习体系架构,还支持可适用于移动端的TensorFlow Lite、caffe2go等机器学习体系架构。再加上这系列内核可在最小的硅面积上以非常低的功耗实现高性能的神经网络计算,因此自面世以来获得了客户的高度认可。Imagination在过去几年里也在快速迭代该系列IP。

2017年9月,Imagination发布了旗下首款神经网络加速器PowerVR Series 2NX NNA,其单核性能仅覆盖1 TOPS到4.1 TOPS的范围;而到了2018年推出的第二代PowerVR 3NX,单核性能不但覆盖了0.6 TOPS到10 TOPS,其多核产品性能更是能做到20 TOPS到160 TOPS,可以满足从L2级到L5级自动驾驶的边缘推理需求。 而文章开头谈到的IMG Series 4NNA则是Imagination推出的第三代NNA。 Andrew Grant表示,这款公司历时两年打造出来的产品不但在性能上获得大幅度提升,还拥有灵活的多核设计、创新性的Tensor Tiling( Imagination’s Tensor Tiling,ITT)技术、低功耗和满足车规级安全需求等多项优势,从而能为领先的汽车行业颠覆者、一级供应商、整车厂(OEM)和汽车系统级芯片(SoC)厂商提供强大助力。

IMGSeries4 NNA 的强势出击

根据Andrew Grant的观点,当前的车载AI芯片拥有三方面的需求,分别是超强性能、超低功耗和超低延迟。当然,作为汽车级别的芯片,安全也是必不可少的,这就是IMG Series 4 NNA的设计指导。

从官方提供的资料我们可以看到,Series4具有以下特性: 首先是多核扩展性和灵活性方面,据Imagination介绍,其多核架构支持在多个核之间对工作负载进行灵活的分配和同步。Imagination的软件提供了精细的控制能力,并通过对多个工作负载进行批处理、拆分和调度而提高了灵活性,现在可以在任意数量的内核上使用。Series4可为每个集群配置 2个、4个、6个或者8个核。

其次是性能。据介绍,Series4的每个单核能够以不到一瓦的功耗提供12.5 TOPS的性能。举例来说,一个8核集群在5nm工艺的加持下,可以提供100 TOPS的算力。那就代表着配有6个8核集群的解决方案可以提供600 TOPS的算力。来到AI推理方面,Series4 NNA的性能比嵌入式GPU快20倍以上,与嵌入式CPU相比,更是快了1000倍。

第三,超低延迟也是这一代NNA IP的另一个特性。据了解,通过将多个单核组成2核、4核、6核或8核的多核集群,所有内核可以相互协作,并行处理一个任务。这就降低了处理延迟,缩短响应时间。数据显示,对于一个8核集群,理想情况下延迟会减少为单核独立执行时的1/8。节省大量带宽则是Imagination新NNA的另一大优势,这主要得益于公司正在申请专利的的Tensor Tiling技术(Imagination’s Tensor Tiling,ITT),这也是Series4中新增的功能。据介绍,借助这项技术,Imagination的Series4可以通过对计算任务进行tiling,充分利用片上存储,提升数据处理效率,并节省访问外部存储的带宽。

在具体操作中,针对不同的任务,有不同的操作方式。据了解,在批处理大量的小型任务时,Tensor Tiling能够把批处理任务分配到各个NNA单核,让每个NNA单核独立工作,提升并行处理的能力;而在面对一些大型网络的时候,Tensor Tiling则可以从多个维度拆分任务,让所有NNA单核共同执行一个推理任务。这不但减少了网络推理的延迟,在理想情况下,协同并行处理的吞吐量与独立并发处理也是相同的。 值得一提的是,这里的拆分都是通过Imagination的编译器来完成的,不需要开发者手动操作,借助NNA的性能分析工具,开发者还能对AI任务进行更好的调度和分配。

另外,因为利用本地数据的依赖性将中间数据保存在片上存储器中,ITT可以最大限度地减少将数据传输至外部存储器,从而将带宽降低多达90%。作为一种可扩展的算法,ITT在拥有大量输入数据的网络上具有显著优势。车规级安全性则是Series4不得不提的另一个优势。众所周知,汽车芯片对安全提出了更高的要求。Imagination为其全新的NNA引入了IP级别的安全功能,且产品的设计流程符合ISO 26262标准,这就能帮助客户更容易获得ISO 26262认证。据报道,Series4可以在不影响性能的情况下,安全地进行神经网络推理。硬件安全机制可以保护编译后的网络、网络的执行和数据处理管道。

在IMG Series4 NNA的发布会上,Andrew Grant除了介绍新IP的硬件性能外,也同时讲述公司围绕这系列芯片打造的软件生态系统,这与硬件配合,加速了开发者的开发速度,简化了开发流程。而为了给汽车运算提供更多的算力支持,Imagination还打通了NNA多核平台与GPU协同,给开发者提供更多的选择。

Andrew Grant在发布会上表示,公司的IMG Series4 NNA已经开始向客户提供授权,产品也将于2020年12月在市场上全面供应。 ABI Research智慧出行和汽车首席分析师James Hodgson说道:“在从L2和L3级ADAS向L4和L5级全自动驾驶演进的过程中,神经网络的广泛应用将是至关重要的因素。这些系统将要处理数以百计的复杂场景,从多个摄像头和激光雷达等大量传感器中提取数据,从而实现自动代客泊车、十字路口管理和复杂城市环境安全导航等解决方案。高性能、低延迟和高能效的结合将是实现高度自动驾驶的关键所在。” 由此可见,一个全新的大门正在面向Imagination开启。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2574

    文章

    54406

    浏览量

    786234
  • imagination
    +关注

    关注

    1

    文章

    617

    浏览量

    63099
  • AI芯片
    +关注

    关注

    17

    文章

    2066

    浏览量

    36570

原文标题:推出600 Tops产品,Imagination持续发力汽车AI芯片市场

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    神经网络加速器的设计优化方案

    特征图保留不变,完成和所有相关卷积核点积以后再加载,最多复用 R*R*M 次。 3.不同网络模型的效果 如图所示,后者相对于前者,减少了连线资源和复杂度。 4.DNN加速器空间架构片上存储
    发表于 10-31 07:14

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定
    发表于 10-29 06:08

    SNN加速器内部神经元数据连接方式

    的数量级,而且生物轴突的延迟和神经元的时间常数比数字电路的传播和转换延迟要大得多,AER 的工作方式和神经网络的特点相吻合,所以受生物启发的神经形态处理中的NoC或SNN
    发表于 10-24 07:34

    在Ubuntu20.04系统中训练神经网络模型的些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练个手写数字识别的神经
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    在完成神经网络量化后,需要将神经网络部署到硬件加速器上。首先需要将所有权重数据以及输入数据导入到存储内。 在仿真环境下,可将其存于个文件
    发表于 10-20 08:00

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是种新型的神经网络架构,设计理念借鉴自生物神经系统,特别是秀
    的头像 发表于 09-28 10:03 708次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络的并行计算与加速技术

    问题。因此,并行计算与加速技术在神经网络研究和应用中变得至关重要,它们能够显著提升神经网络的性能和效率,满足实际应用中对快速响应和大规模数据处理的需求。神经网络并行
    的头像 发表于 09-17 13:31 892次阅读
    <b class='flag-5'>神经网络</b>的并行计算与<b class='flag-5'>加速</b>技术

    Andes晶心科技推出新一代深度学习加速器

    高效能、低功耗 32/64 位 RISC-V 处理核与 AI 加速解决方案的领导供货商—Andes晶心科技(Andes Technology)今日正式发表最新深度学习加速器 AndesAIRE AnDLA I370。此
    的头像 发表于 08-20 17:43 1870次阅读

    神经网络RAS在异步电机转速估计中的仿真研究

    众多方法中,由于结构简单,稳定性好广泛受到人们的重视,且已被用于产品开发。但是MRAS仍存在在低速区速度估计精度下降和对电动机参数变化非常敏感的问题。本文利用神经网络的特点,使估计更为简单、快速
    发表于 06-16 21:54

    MAX78002带有低功耗卷积神经网络加速器的人工智能微控制技术手册

    的Maxim超低功耗微控制相结合。通过这款基于硬件的卷积神经网络(CNN)加速器,即使是电池供电的应用也可执行AI推理,同时功耗仅为微焦耳级。
    的头像 发表于 05-08 10:16 604次阅读
    MAX78002带有低功耗卷积<b class='flag-5'>神经网络</b><b class='flag-5'>加速器</b>的人工智能微控制<b class='flag-5'>器</b>技术手册

    BP神经网络与卷积神经网络的比较

    多层。 每层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) :
    的头像 发表于 02-12 15:53 1324次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍:
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Ba
    的头像 发表于 02-12 15:15 1358次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2264次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    意法半导体发布新一代微控制,集成NPU加速器推动边缘AI

    全球领先的半导体公司意法半导体(STMicroelectronics,简称ST)近日宣布推出全新系列微控制,这是首款集成机器学习(ML)加速器产品。此举标志着意法半导体在推动边缘
    的头像 发表于 12-23 18:13 1200次阅读