0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CVChain:一个较完善的计算机视觉工具链

新机器视觉 来源:新机器视觉 作者:新机器视觉 2020-11-27 09:56 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

我们这一年来做的一些工作(总结见文章最下方)现在差不多形成了一个较完善的计算机视觉工具链——CVChain。我们这一年来做的一些工作(总结见文章最下方)现在差不多形成了一个较完善的计算机视觉工具链——CVChain。

纵向上它涵盖了一个计算机视觉任务的生命周期:数据分析与模型选型、模型训练、发现模型存在的问题并优化、模型加速、模型SDK编写;横向上它包含了计算机视觉中三个基本任务:分类、语义分割、目标检测;与此同时它还总结了计算机视觉入门到进阶的学习框架。一言以蔽之:有了CVChain,妈妈再也不用担心我搞不定计算机视觉!

CVChain是我们平常做项目或者打比赛过程中打磨出来的,它们可以满足计算机视觉算法工程师日常大部分需求,比如:

1.刚踏入计算机视觉领域,不知道从何学起,需要一张学习的地图:

https://github.com/mileistone/study_resources/blob/master/modeling/learning_framework/learning_framework_general.md

部分示例

带着自己一步一步领略计算机视觉的风采;

2.已经成为一名合格的计算机视觉算法工程师,开始接任务。当任务来了,需要分析数据分析数据以进行模型选型、模型超参的初步设定;

https://github.com/Media-Smart/volkscv/tree/master/volkscv/analyzer/statistics

3.模型确定后,得训练模型(可能涉及到分类、语义分割、文字识别、目标检测等等),这个时候需要一个趁手的训练工具;

分类:
https://github.com/Media-Smart/vedacls

语义分割
https://github.com/Media-Smart/vedaseg

示例

文字识别
https://github.com/Media-Smart/vedastr

示例

目标检测
https://github.com/Media-Smart/vedadet

4.模型训练完之后,效果不够好,我们需要把FP、FN打印出来,分析模型存在的问题;

https://github.com/Media-Smart/volkscv/tree/master/volkscv/analyzer/visualization

5.模型训练好之后,需要将模型转换为应用并进行部署,这里需要用TensorRT对模型进行加速,然后根据业务需求编写Python前端或者C++前端的SDK;

加速
https://github.com/Media-Smart/volksdep

Python前端
https://github.com/Media-Smart/flexinfer

示例

C++前端
https://github.com/Media-Smart/cheetahinfer

6.计算机行业竞争激烈,平常得抽空加强学习,无论是工程、模型还是算法方面,都需要持续不断学习,把自己训练为一名六边形战士。

工程
https://github.com/mileistone/study_resources/tree/master/engineering

模型
https://github.com/mileistone/study_resources/tree/master/modeling

算法
https://github.com/mileistone/study_resources/tree/master/modeling/optimization_and_generalization

上述的“2、数据分析”提供以下功能。

1、浏览图片和标注

比如分类、目标检测、语义分割等等,这可以帮助我们对数据有一个感性的认识,可以定性出来这个任务有哪些挑战。

2、图片和标注分析

比如图片大小分布,图片长宽比分布,图片中GT框数量分布,GT框长宽分布等等,这可以让我们对数据有一些理性的认识,让我们可以定量这个任务存在的挑战。

3、打印模型预测结果中的FP、FN

比如分类。

比如目标检测。

比如语义分割。

打印FP、FN可以让我们发现模型存在的问题,进而有助于我们分析问题、定位问题直至解决问题。

4、anchor分析

比如GT匹配上的anchor数量分布,GT与匹配上anchor的IoU分布等等。这有助于我们设计出更好的anchor策略,比如anchor应该放在哪几层,每一层anchor数量应该设置多少,对应的大小和长宽比是多少,以及label assignment该怎么做等等。

汇总

https://github.com/Media-Smart/vedaseg

https://github.com/Media-Smart/vedastr

https://github.com/Media-Smart/vedacls

https://github.com/Media-Smart/vedadet

Media-Smart/volksdep,https://github.com/Media-Smart/volksdep

Media-Smart/flexinfer,https://github.com/Media-Smart/flexinfer

https://github.com/Media-Smart/cheetahinfer

https://github.com/Media-Smart/volkscv

https://github.com/mileistone/study_resources

- 数据分析 - [volkscv](https://github.com/Media-Smart/volkscv/tree/master/volkscv/analyzer/) - 数据浏览 -> 获取感性认识 - 图片、标注 - 数据统计 -> 获取理性认识 - 图片统计 - 大小 - 长宽比 - 等等 - 标注统计 - 类别 - 各个类别有多少实例 - 等等 - GT框 - 大小 - 长宽比 - 等等 - anchor分析 - GT挂上anchor的数量分布 - GT与挂上anchor的IoU分布- 模型训练 - [vedaseg](https://github.com/Media-Smart/vedaseg) - semantic segmentation - [vedastr](https://github.com/Media-Smart/vedastr) - scene text recognition - [vedacls](https://github.com/Media-Smart/vedacls) - classification - [vedadet](https://github.com/Media-Smart/vedadet) - object detection - 应用部署 - [volksdep](https://github.com/Media-Smart/volksdep) - increase efficiency and decrease latency - convert PyTorch,ONNX model to TensorRT engine - [flexinfer](https://github.com/Media-Smart/flexinfer) -> Python front end SDK based on TensorRT engine - classification - semantic segmentation - scene text recognition - object detection - [cheetahinfer](https://github.com/Media-Smart/cheetahinfer) -> C++ front end SDK based on TensorRT engine - classification - semantic segmentation - object detection- 学习资源 - [学习框架]

(https://github.com/mileistone/study_resources/tree/master/modeling/learning_framework) - 知识点 - 相关课程与书籍 - 基础 - [工程](https://github.com/mileistone/study_resources/tree/master/engineering) - 编程语言 - Python - C++ - 软件工程 - 设计模式 - 操作系统 - Linux - Bash - Vim - 编译工具链 - [模型](https://github.com/mileistone/study_resources/tree/master/modeling) - 内容 - 机器学习 - 深度学习 - 计算机视觉 - 形式 - 课程 - 书籍 - 论文 - [算法](https://github.com/mileistone/study_resources/tree/master/modeling/optimization_and_generalization) - 凸优化 - 数值优化

责任编辑:xj

原文标题:CVChain:一条用视觉竞赛和项目经验打磨出的计算机视觉完整工具链

文章出处:【微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CV
    CV
    +关注

    关注

    0

    文章

    54

    浏览量

    17465
  • 计算机视觉
    +关注

    关注

    9

    文章

    1714

    浏览量

    47445

原文标题:CVChain:一条用视觉竞赛和项目经验打磨出的计算机视觉完整工具链

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    使用代理式AI激活传统计算机视觉系统的三种方法

    当前的计算机视觉系统擅长于识别物理空间与流程中的事件,却难以诠释场景细节及其意义,也无法推理后续可能发生的情况。
    的头像 发表于 12-01 09:44 311次阅读

    STM32计算机视觉开发套件:B-CAMS-IMX摄像头模块技术解析

    STMicroelectronics用于 STM32开发板的B-CAMS-IMX摄像头模块提供强大的硬件集,可处理多种计算机视觉场景和用例。该模块具有高分辨率500万像素IMX335LQN
    的头像 发表于 10-20 09:46 698次阅读
    STM32<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>开发套件:B-CAMS-IMX摄像头模块技术解析

    【作品合集】赛昉科技VisionFive 2单板计算机开发板测评

    +点灯 作者:jf_43382582【VisionFive 2单板计算机试用体验】coremark跑分测试【VisionFive 2单板计算机试用体验】VisionFive 2霸气
    发表于 09-04 09:08

    易控智驾荣获计算机视觉顶会CVPR 2025认可

    近日,2025年国际计算机视觉与模式识别顶级会议(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美国田纳西州纳什维尔召开。
    的头像 发表于 07-29 16:54 967次阅读

    工业计算机的重要性

    工业计算机对某些行业至关重要。我们将在下面详细解释这些行业中的工业计算机应用。1.制造与工业自动化工业级计算机非常适合制造工厂,特别是那些想要自动化装配过程的工厂。在这样的环境中,工业计算机
    的头像 发表于 07-28 16:07 396次阅读
    工业<b class='flag-5'>计算机</b>的重要性

    自动化计算机经过加固后有什么好处?

    让我们讨论下部署坚固的自动化计算机些好处。1.温度范围宽自动化计算机经过工程设计,配备了支持宽温度范围的组件,使自动化计算解决方案能够
    的头像 发表于 07-21 16:44 417次阅读
    自动化<b class='flag-5'>计算机</b>经过加固后有什么好处?

    自动化计算机的功能与用途

    工业自动化是指利用自动化计算机来控制工业环境中的流程、机器人和机械,以制造产品或其部件。工业自动化的目的是提高生产率、增加灵活性,并提升制造过程的质量。工业自动化在汽车制造中体现得最为明显,其中许多
    的头像 发表于 07-15 16:32 525次阅读
    自动化<b class='flag-5'>计算机</b>的功能与用途

    工业计算机与商用计算机的区别有哪些

    工业计算机种专为工厂和工业环境设计的计算系统,具有高可靠性和稳定性,能够应对恶劣环境下的自动化、制造和机器人操作。其特点包括无风扇散热技术、无电缆连接和防尘防水设计,使其在各种工业自动化场景中
    的头像 发表于 07-10 16:36 509次阅读
    工业<b class='flag-5'>计算机</b>与商用<b class='flag-5'>计算机</b>的区别有哪些

    利用边缘计算和工业计算机实现智能视频分析

    IVA的好处、实际部署应用程序以及工业计算机如何实现这些解决方案。、什么是智能视频分析(IVA)?智能视频分析(IVA)集成了复杂的计算机视觉,通常与卷积神经网
    的头像 发表于 05-16 14:37 629次阅读
    利用边缘<b class='flag-5'>计算</b>和工业<b class='flag-5'>计算机</b>实现智能视频分析

    文带你了解工业计算机尺寸

    项艰巨的任务。本博客将指导您了解关键的工业计算机尺寸、使用案例。关键工业计算机外形要素及其使用案例、工业微型PC尺寸范围:宽度:100毫米-180毫米深度:10
    的头像 发表于 04-24 13:35 788次阅读
    <b class='flag-5'>一</b>文带你了解工业<b class='flag-5'>计算机</b>尺寸

    计算机网络入门指南

    计算机网络是指将地理位置不同且具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统、网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。
    的头像 发表于 04-22 14:29 1855次阅读
    <b class='flag-5'>计算机</b>网络入门指南

    Arm KleidiCV与OpenCV集成助力移动端计算机视觉性能优化

    生成式及多模态人工智能 (AI) 工作负载的广泛增长,推动了对计算机视觉 (CV) 技术日益高涨的需求。此类技术能够解释并分析源自现实世界的视觉信息,并可应用于人脸识别、照片分类、滤镜处理及增强现实
    的头像 发表于 02-24 10:15 874次阅读

    AR和VR中的计算机视觉

    ):计算机视觉引领混合现实体验增强现实(AR)和虚拟现实(VR)正在彻底改变我们与外部世界的互动方式。即便是在引人入胜的沉浸式
    的头像 发表于 02-08 14:29 2119次阅读
    AR和VR中的<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>

    云端超级计算机使用教程

    云端超级计算机种基于云计算的高性能计算服务,它将大量计算资源和存储资源集中在起,通过网络向
    的头像 发表于 12-17 10:19 932次阅读

    RS232设备与计算机连接的实现步骤

    标准定义了电压水平、数据格式、控制信号等。了解这些标准对于正确连接和通信至关重要。 2. 检查设备和计算机的RS-232端口 确认你的设备和计算机都有RS-232端口。如果没有,你可能需要
    的头像 发表于 12-10 17:21 5051次阅读