0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

计算机视觉CV领域图像分类方向文献和代码的超全总结和列表!

新机器视觉 来源:新机器视觉 作者:新机器视觉 2020-11-03 10:08 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

今天给大家介绍自 2014 年以来,计算机视觉 CV 领域图像分类方向文献和代码的超全总结和列表!总共涉及 36 种 ConvNet 模型。该 GitHub 项目作者是 weiaicunzai,项目地址是:

https://github.com/weiaicunzai/awesome-image-classification

背景

我相信图像识别是深入到其它机器视觉领域一个很好的起点,特别是对于刚刚入门深度学习的人来说。当我初学 CV 时,犯了很多错。我当时非常希望有人能告诉我应该从哪一篇论文开始读起。到目前为止,似乎还没有一个像 deep-learning-object-detection 这样的 GitHub 项目。因此,我决定建立一个 GitHub 项目,列出深入学习中关于图像分类的论文和代码,以帮助其他人。

对于学习路线,我的个人建议是,对于那些刚入门深度学习的人,可以试着从 vgg 开始,然后是 googlenet、resnet,之后可以自由地继续阅读列出的其它论文或切换到其它领域。

性能表

基于简化的目的,我只从论文中列举出在 ImageNet 上准确率最高的 top1 和 top5。注意,这并不一定意味着准确率越高,一个网络就比另一个网络更好。因为有些网络专注于降低模型复杂性而不是提高准确性,或者有些论文只给出 ImageNet 上的 single crop results,而另一些则给出模型融合或 multicrop results。

关于性能表的标注:

ConvNet:卷积神经网络的名称

ImageNet top1 acc:论文中基于 ImageNet 数据集最好的 top1 准确率

ImageNet top5 acc:论文中基于 ImageNet 数据集最好的 top5 准确率

Published In:论文发表在哪个会议或期刊

论文&代码

1. VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Karen Simonyan, Andrew Zisserman

pdf: https://arxiv.org/abs/1409.1556

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

2. GoogleNet

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

pdf:https://arxiv.org/abs/1409.4842

code: unofficial-tensorflow :

https://github.com/conan7882/GoogLeNet-Inception

code: unofficial-caffe :

https://github.com/lim0606/caffe-googlenet-bn

3.PReLU-nets

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1502.01852

code: unofficial-chainer :

https://github.com/nutszebra/prelu_net

4.ResNet

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1512.03385

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py

code: unofficial-keras :

https://github.com/raghakot/keras-resnet

code: unofficial-tensorflow :

https://github.com/ry/tensorflow-resnet

5.PreActResNet

Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1603.05027

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua

code: official :

https://github.com/KaimingHe/resnet-1k-layers

code: unoffical-pytorch :

https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py

code: unoffical-mxnet :

https://github.com/tornadomeet/ResNet

6.Inceptionv3

Rethinking the Inception Architecture for Computer Vision

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

pdf:https://arxiv.org/abs/1512.00567

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py

7.Inceptionv4 && Inception-ResNetv2

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

pdf:https://arxiv.org/abs/1602.07261

code: unofficial-keras :

https://github.com/kentsommer/keras-inceptionV4

code: unofficial-keras :

https://github.com/titu1994/Inception-v4

code: unofficial-keras :

https://github.com/yuyang-huang/keras-inception-resnet-v2

8. RIR

Resnet in Resnet: Generalizing Residual Architectures

Sasha Targ, Diogo Almeida, Kevin Lyman

pdf:https://arxiv.org/abs/1603.08029

code: unofficial-tensorflow :

https://github.com/SunnerLi/RiR-Tensorflow

code: unofficial-chainer :

https://github.com/nutszebra/resnet_in_resnet

9.Stochastic Depth ResNet

Deep Networks with Stochastic Depth

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

pdf:https://arxiv.org/abs/1603.09382

code: unofficial-torch :

https://github.com/yueatsprograms/Stochastic_Depth

code: unofficial-chainer :

https://github.com/yasunorikudo/chainer-ResDrop

code: unofficial-keras :

https://github.com/dblN/stochastic_depth_keras

10.WRN

Wide Residual Networks

Sergey Zagoruyko, Nikos Komodakis

pdf:https://arxiv.org/abs/1605.07146

code: official :

https://github.com/szagoruyko/wide-residual-networks

code: unofficial-pytorch :

https://github.com/xternalz/WideResNet-pytorch

code: unofficial-keras :

https://github.com/asmith26/wide_resnets_keras

code: unofficial-pytorch :

https://github.com/meliketoy/wide-resnet.pytorch

11.squeezenet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size 

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

pdf:https://arxiv.org/abs/1602.07360

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

code: unofficial-caffe :

https://github.com/DeepScale/SqueezeNet

code: unofficial-keras :

https://github.com/rcmalli/keras-squeezenet

code: unofficial-caffe :

https://github.com/songhan/SqueezeNet-Residual

12.GeNet

Genetic CNN

Lingxi Xie, Alan Yuille

pdf:https://arxiv.org/abs/1703.01513

code: unofficial-tensorflow :

https://github.com/aqibsaeed/Genetic-CNN

12.MetaQNN

Designing Neural Network Architectures using Reinforcement Learning

Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

pdf:https://arxiv.org/abs/1703.01513

code: official :https://github.com/bowenbaker/metaqnn

13.PyramidNet

Deep Pyramidal Residual Networks

Dongyoon Han, Jiwhan Kim, Junmo Kim

pdf:https://arxiv.org/abs/1610.02915

code: official :

https://github.com/jhkim89/PyramidNet

code: unofficial-pytorch :

https://github.com/dyhan0920/PyramidNet-PyTorch

14.DenseNet

Densely Connected Convolutional Networks

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1608.06993

code: official :

https://github.com/liuzhuang13/DenseNet

code: unofficial-keras :

https://github.com/titu1994/DenseNet

code: unofficial-caffe :

https://github.com/shicai/DenseNet-Caffe

code: unofficial-tensorflow :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/bamos/densenet.pytorch

code: unofficial-keras :

https://github.com/flyyufelix/DenseNet-Keras

15.FractalNet

FractalNet: Ultra-Deep Neural Networks without Residuals

Gustav Larsson, Michael Maire, Gregory Shakhnarovich

pdf:https://arxiv.org/abs/1605.07648

code: unofficial-caffe :

https://github.com/gustavla/fractalnet

code: unofficial-keras :

https://github.com/snf/keras-fractalnet

code: unofficial-tensorflow :

https://github.com/tensorpro/FractalNet

16.ResNext

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

pdf:https://arxiv.org/abs/1611.05431

code: official :

https://github.com/facebookresearch/ResNeXt

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py

code: unofficial-pytorch :

https://github.com/prlz77/ResNeXt.pytorch

code: unofficial-keras :

https://github.com/titu1994/Keras-ResNeXt

code: unofficial-tensorflow :

https://github.com/taki0112/ResNeXt-Tensorflow

code: unofficial-tensorflow :

https://github.com/wenxinxu/ResNeXt-in-tensorflow

17.IGCV1

Interleaved Group Convolutions for Deep Neural Networks

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

pdf:https://arxiv.org/abs/1707.02725

code official :

https://github.com/hellozting/InterleavedGroupConvolutions

18.Residual Attention Network

Residual Attention Network for Image Classification

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

pdf:https://arxiv.org/abs/1704.06904

code: official :

https://github.com/fwang91/residual-attention-network

code: unofficial-pytorch :

https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch

code: unofficial-gluon :

https://github.com/PistonY/ResidualAttentionNetwork

code: unofficial-keras :

https://github.com/koichiro11/residual-attention-network

19.Xception

Xception: Deep Learning with Depthwise Separable Convolutions

François Chollet

pdf:https://arxiv.org/abs/1610.02357

code: unofficial-pytorch :

https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py

code: unofficial-tensorflow :

https://github.com/kwotsin/TensorFlow-Xception

code: unofficial-caffe :

https://github.com/yihui-he/Xception-caffe

code: unofficial-pytorch :

https://github.com/tstandley/Xception-PyTorch

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py

20.MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

pdf:https://arxiv.org/abs/1704.04861

code: unofficial-tensorflow :

https://github.com/Zehaos/MobileNet

code: unofficial-caffe :

https://github.com/shicai/MobileNet-Caffe

code: unofficial-pytorch :

https://github.com/marvis/pytorch-mobilenet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

21.PolyNet

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

pdf:https://arxiv.org/abs/1611.05725

code: official :

https://github.com/open-mmlab/polynet

22.DPN

Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

pdf:https://arxiv.org/abs/1707.01629

code: official :

https://github.com/cypw/DPNs

code: unoffical-keras :

https://github.com/titu1994/Keras-DualPathNetworks

code: unofficial-pytorch :

https://github.com/oyam/pytorch-DPNs

code: unofficial-pytorch :

https://github.com/rwightman/pytorch-dpn-pretrained

23.Block-QNN

Practical Block-wise Neural Network Architecture Generation

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

pdf:https://arxiv.org/abs/1708.05552

24.CRU-Net

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

pdf:https://arxiv.org/abs/1703.02180

code official :

https://github.com/cypw/CRU-Net

code unofficial-mxnet :

https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet

25.ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

pdf:https://arxiv.org/abs/1707.01083

code: unofficial-tensorflow :

https://github.com/MG2033/ShuffleNet

code: unofficial-pytorch :

https://github.com/jaxony/ShuffleNet

code: unofficial-caffe :

https://github.com/farmingyard/ShuffleNet

code: unofficial-keras :

https://github.com/scheckmedia/keras-shufflenet

26.CondenseNet

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1711.09224

code: official :

https://github.com/ShichenLiu/CondenseNet

code: unofficial-tensorflow :

https://github.com/markdtw/condensenet-tensorflow

27.NasNet

Learning Transferable Architectures for Scalable Image Recognition

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

pdf:https://arxiv.org/abs/1707.07012

code: unofficial-keras :

https://github.com/titu1994/Keras-NASNet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py

code: unofficial-pytorch :

https://github.com/wandering007/nasnet-pytorch

code: unofficial-tensorflow :

https://github.com/yeephycho/nasnet-tensorflow

28.MobileNetV2

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

pdf:https://arxiv.org/abs/1801.04381

code: unofficial-keras :

https://github.com/xiaochus/MobileNetV2

code: unofficial-pytorch :

https://github.com/Randl/MobileNetV2-pytorch

code: unofficial-tensorflow :

https://github.com/neuleaf/MobileNetV2

29.IGCV2

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi

pdf:https://arxiv.org/abs/1804.06202

30.hier

Hierarchical Representations for Efficient Architecture Search

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

pdf:https://arxiv.org/abs/1711.00436

31.PNasNet

Progressive Neural Architecture Search

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

pdf:https://arxiv.org/abs/1712.00559

code: tensorflow-slim :

https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py

code: unofficial-pytorch :

https://github.com/chenxi116/PNASNet.pytorch

code: unofficial-tensorflow :

https://github.com/chenxi116/PNASNet.TF

32.AmoebaNet

Regularized Evolution for Image Classifier Architecture Search

Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

pdf:https://arxiv.org/abs/1802.01548

code: tensorflow-tpu :

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net

33.SENet

Squeeze-and-Excitation Networks

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

pdf:https://arxiv.org/abs/1709.01507

code: official :

https://github.com/hujie-frank/SENet

code: unofficial-pytorch :

https://github.com/moskomule/senet.pytorch

code: unofficial-tensorflow :

https://github.com/taki0112/SENet-Tensorflow

code: unofficial-caffe :

https://github.com/shicai/SENet-Caffe

code: unofficial-mxnet :

https://github.com/bruinxiong/SENet.mxnet

34.ShuffleNetV2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

pdf:https://arxiv.org/abs/1807.11164

code: unofficial-pytorch :

https://github.com/Randl/ShuffleNetV2-pytorch

code: unofficial-keras :

https://github.com/opconty/keras-shufflenetV2

code: unofficial-pytorch :

https://github.com/Bugdragon/ShuffleNet_v2_PyTorch

code: unofficial-caff2:

https://github.com/wolegechu/ShuffleNetV2.Caffe2

35.IGCV3

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang

pdf:https://arxiv.org/abs/1806.00178

code: official :

https://github.com/homles11/IGCV3

code: unofficial-pytorch :

https://github.com/xxradon/IGCV3-pytorch

code: unofficial-tensorflow :

https://github.com/ZHANG-SHI-CHANG/IGCV3

36.MNasNet

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

pdf:https://arxiv.org/abs/1807.11626

code: unofficial-pytorch :

https://github.com/AnjieZheng/MnasNet-PyTorch

code: unofficial-caffe :

https://github.com/LiJianfei06/MnasNet-caffe

code: unofficial-MxNet :

https://github.com/chinakook/Mnasnet.MXNet

code: unofficial-keras :

https://github.com/Shathe/MNasNet-Keras-Tensorflow

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CV
    CV
    +关注

    关注

    0

    文章

    54

    浏览量

    17474
  • 图像分类
    +关注

    关注

    0

    文章

    96

    浏览量

    12417
  • 计算机视觉
    +关注

    关注

    9

    文章

    1714

    浏览量

    47460

原文标题:​CV 图像分类常见的 36 个模型汇总!附完整论文和代码

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Amphenol Rugged SOM:紧凑型嵌入式计算机模块的卓越之选

    Amphenol Rugged SOM:紧凑型嵌入式计算机模块的卓越之选 在嵌入式计算机模块领域,Amphenol Rugged SOM 以其独特的设计和强大的功能脱颖而出。今天,我
    的头像 发表于 12-10 14:15 92次阅读

    图像采集卡:机器视觉时代的图像数据核心枢纽

    的采集、转换、传输与初步处理,搭建起图像传感器(相机/摄像头)与计算机之间的高速数据链路。其核心价值在于解决“原始图像信号如何高效、精准、稳定地转化为计算机可处理数据
    的头像 发表于 11-12 15:15 316次阅读
    <b class='flag-5'>图像</b>采集卡:机器<b class='flag-5'>视觉</b>时代的<b class='flag-5'>图像</b>数据核心枢纽

    STM32计算机视觉开发套件:B-CAMS-IMX摄像头模块技术解析

    CMOS RGB图像传感器、ISM330DLC惯性运动单元和VL53L5CX ToF传感器。B-CAMS-IMX可用于任何具有MIPI CSI-2® 接口(带22引脚FFC连接器)的STM32开发板,轻松在STM32微控制器和微处理器上实现全功能计算机
    的头像 发表于 10-20 09:46 751次阅读
    STM32<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>开发套件:B-CAMS-IMX摄像头模块技术解析

    什么是机器视觉及其功能?

    机器视觉本质上是一个系统(例如一台计算机)查看的能力。系统通过该能力分析图像,然后作出决策或进行分类
    的头像 发表于 09-10 17:23 607次阅读
    什么是机器<b class='flag-5'>视觉</b>及其功能?

    易控智驾荣获计算机视觉顶会CVPR 2025认可

    近日,2025年国际计算机视觉与模式识别顶级会议(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美国田纳西州纳什维尔召开。
    的头像 发表于 07-29 16:54 990次阅读

    基于LockAI视觉识别模块:手写数字识别

    手写数字识别是一种经典的模式识别和图像处理问题,旨在通过计算机自动识别用户手写的数字。 本文将教会你如何使用基于RV1106的 LockAI视觉识别模块进行手写数字识别。 源代码:ht
    发表于 06-30 16:45

    工业相机图像采集卡:机器视觉的核心枢纽

    工业相机图像采集卡是用于连接工业相机与计算机的关键硬件设备,主要负责将相机输出的图像信号转换为计算机可处理的数字信号,并实现高速、稳定的数据传输。它在工业自动化、机器
    的头像 发表于 05-21 12:13 545次阅读
    工业相机<b class='flag-5'>图像</b>采集卡:机器<b class='flag-5'>视觉</b>的核心枢纽

    基于LockAI视觉识别模块:C++使用图像的统计信息

    ./Test-Image-information-statistics 5.2 运行效果 在运行上述代码时,会输出以下结果: 6. 总结 通过上述内容,我们介绍了如何使用 OpenCV 提取图像的 ROI、转换颜色空间、
    发表于 05-08 10:31

    基于LockAI视觉识别模块:C++图像的基本运算

    图像处理中,理解图像的基本操作是掌握计算机视觉技术的关键。本文章将介绍 基于LockAI视觉识别模块下OpenCV 中
    发表于 05-06 16:56

    基于LockAI视觉识别模块:C++图像采集例程

    Vision Library)是一个开源的计算机视觉库,提供丰富的图像处理和视频捕获功能。通过其VideoCapture类,开发者可以轻松调用摄像头设备并获取视频流。 1.2 VideoCapture
    发表于 04-30 10:52

    英飞凌边缘AI平台通过Ultralytics YOLO模型增加对计算机视觉的支持

    计算机视觉的支持,扩大了当前对音频、雷达和其他时间序列信号数据的支持范围。在增加这项支持后,该平台将能够用于开发低功耗、低内存的边缘AI视觉模型。这将给诸多应用领域的机器学习开发人员
    的头像 发表于 03-11 15:11 663次阅读
    英飞凌边缘AI平台通过Ultralytics YOLO模型增加对<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的支持

    Arm KleidiCV与OpenCV集成助力移动端计算机视觉性能优化

    生成式及多模态人工智能 (AI) 工作负载的广泛增长,推动了对计算机视觉 (CV) 技术日益高涨的需求。此类技术能够解释并分析源自现实世界的视觉信息,并可应用于人脸识别、照片
    的头像 发表于 02-24 10:15 887次阅读

    AR和VR中的计算机视觉

    ):计算机视觉引领混合现实体验增强现实(AR)和虚拟现实(VR)正在彻底改变我们与外部世界的互动方式。即便是在引人入胜的沉浸式
    的头像 发表于 02-08 14:29 2166次阅读
    AR和VR中的<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>

    云端超级计算机使用教程

    云端超级计算机是一种基于云计算的高性能计算服务,它将大量计算资源和存储资源集中在一起,通过网络向用户提供按需的计算服务。下面,AI部落小编为
    的头像 发表于 12-17 10:19 973次阅读

    AI模型部署边缘设备的奇妙之旅:如何在边缘端部署OpenCV

    、车辆和其他重要元素。 2 基础知识 OpenCV 是一个开源的计算机视觉和机器学习软件库,广泛用于图像处理、视频捕捉、物体检测等领域。一些常用操作及其目的: 读取图片 使用
    发表于 12-14 09:31