0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

在情感分析中使用知识的一些代表性工作

深度学习自然语言处理 来源:深度学习自然语言处理 作者:哈工大SCIR 袁建华 2020-11-02 16:05 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1.引文

情感分析 知识

当training数据不足以覆盖inference阶段遇到的特征时,是标注更多的数据还是利用现有外部知识充当监督信号

基于机器学习深度学习的情感分析方法,经常会遇到有标注数据不足,在实际应用过程中泛化能力差的局面。为了弥补这一缺点,学者们尝试引入外部情感知识为模型提供监督信号,提高模型分析性能。本文从常见的外部情感知识类型出发,简要介绍在情感分析中使用知识的一些代表性工作。

2.正文

我们为什么要不断尝试在情感分析中融入知识呢?笔者以为有如下几点原因:

1)一般的文本分类任务只提供句子或文档级别的情感标签,引入情感词典等先验情感知识可以给情感文本引入更细粒度监督信号,使得模型能学到更适合情感分析任务的特征表示。

2)底层的词性、句法等分析任务能给下游的情感分类、抽取任务提供参考信息,如评价表达通常是形容词或形容词短语,而评价对象通常是名词;不同情感分析任务本身存在相互促进作用,如评价对象和评价词在句子中出现的距离通常比较近,联合抽取能同时提高两者的性能表现。

3)短文本评论通常略去了大量的背景常识知识,从文本本身通常难以推断真实情感倾向性。例如一条有关大选的推文内容是“I am so grateful for Joe Biden. Vote for #JoeBiden!!”,文本中并未涉及任何有关Trump的描述,要判断它关于Trump的立场倾向性时,需要了解的背景知识是,二者是这次大选的竞争对手,支持一个人就意味着反对另一个人。

那情感分析常用的知识又有哪些呢?

2.1 知识的类型及情感分析常用知识库

依据对知识获取途径的划分方式[1],我们简单总结了情感分析中常用的知识类型:

显性知识

一般情感词典(如MPQA,Bing Liu词典等),情感表情符;否定词(Negation)、强化词(Intensification)、连接词(Conjunction)等规则

SentiWordNet

ConceptNet,SenticNet

数据

数据 (Twitter、微博表情符弱标注数据)

领域数据集 (例如某一类别商品评论数据)

学习算法

词法、句法、语义依存等模型

多任务学习算法

预训练语言模型、词向量学习算法

其中,以情感词典最为常用。情感分析数据通常结合语言模型算法,产生情感向量表示作为下游任务输入;词法、句法分析模型一般直接为下游情感分析任务提供特征输入或者以多任务学习的方式参与到下游情感分析任务的训练过程中;结构化的外部知识库通常需要借助图算法进行特征挖掘,为文本提供更丰富的常识、情感上下文信息。

2.2 知识的引入方式及在情感分析部分任务上的应用

下表展示了几种常见的知识类型及其特点,我们将根据知识的获取途径及引入方式,结合具体论文阐述其使用方式。

知识类型 优点 缺点
人工情感词典 质量高 规模小,静态,覆盖低
自动情感词典 规模大 静态、质量低
语言学规则 适用范围广 不够准确
预训练语言模型 上下文建模能力强 参数量大,训练时间长,运行速度慢
常识知识库 规模大、质量高、覆盖全 利用困难

目前,相关的情感分析工作可以大致分为以下几类:

引入情感词典知识

要说情感知识,大部分人首先会想到的就是人工编纂的情感词典,它简明直观、质量高、极性明确,使用方便,广泛应用在情感分类、情感元素抽取、情感原因发现、情感文本风格迁移等多种情感分析任务上。情感词区别于非情感词的地方在于,它们一般表征一定的情感/情绪状态,通常情感词典中还会给出其强度打分。类似的,现在网络上流行的部分表情符 (emoj,如:) 、:( 、、)也能表征某些情感/情绪状态。

图1 人工编纂的情感词典

我们在这里介绍一个同时使用情感词典中词的极性和打分的工作,看看前人们是如何在神经网络中把情感词的情感信息融入文本的情感表示中的。

给定一段评论文本,Teng等人[2]首先找出其中的情感相关词汇(如情感词、转折词、否定词),并计算其对文本整体情感极性的贡献程度,然后将每个词的贡献值乘上其情感得分作为局部的情感极性值,最终加上全局的情感极性预测值作为整个文本的情感得分。

图2 同时使用情感词典中词的极性和打分

虽然上述工作在计算情感得分时,考虑了not、very等否定词、强化词的得分信息,但是没有显式把这些词对周围词的情感语义表示的影响刻画出来,Qian等人[3]考虑到情感词、否定词、强化词在情感语义组合过程中起到的不同作用,对文本建模过程中对不同位置词的情感分布加以约束。例如,若一个词的上文是not等否定词,会带来not处文本情感语义的翻转。

图3 对不同位置词的情感分布加以约束

总体来看,情感词典作为一种易于获取、极性准确的情感知识,能够在标注语料之外,为情感分析提供额外的监督信号,既可以提升有监督模型的泛化能力,也能够为半监督、无监督模型提供一定的指导。

引入大规模无标注语料

语言建模作为一个典型的自监督学习任务,其语言模型产生的词表示作为下游任务网络模型的输入,表现出优越的性能,因而得到广泛的应用。如果能将情感知识融入到语言模型中,其产生的词表示必然对情感分析各子任务带来性能提升。

我们接着介绍一个在词向量中融入显式情感词典知识(实际使用的是表情符)的方法。

Tang等人[4]观察到,一般的词向量对于“good”和“bad”这种上下文相近但极性相反的词,给出的向量表示没有很强的区分性,不利于下游的各情感分析任务。Twitter和微博中有海量包含表情符的文本,利用这些情感极性明确的表情符可以过滤得到大量弱标注的情感文本。Tang等人使用这些语料,他们在普通的C&W模型基础上,引入情感得分相关的损失,将这些弱标注的情感信息融入词向量表示中,使“good”和“bad”这种上下文相近但情感不同的词的向量表示有明显的差异。在情感分类任务上,他们验证了融入情感表情符知识的有效性。在此基础上,他们还进一步自动构建大规模情感词典,该词典被[2]应用到Twitter情感分类任务上。

图4 将基于表情符过滤的弱标注情感信息融入词向量表示中

引入外部特征提取算法

除了准确的情感词知识,词法、句法、语义依存信息、评价词和评价表达等情感信息在文本的情感语义建模过程中也发挥了重要作用,这些知识不是显性存在于大规模的知识图谱中,而是存在于对应的人工标注数据中。一般利用学习算法从这些数据中训练用于提取特征的模型。

Tian等人[5]在近期的预训练BERT语言模型基础上,将文本中的评价对象(属性)、情感词等情感元素引入Mask Language Model预训练任务,进一步提高了BERT类模型在多个情感分类数据集上的性能。

图5 将多种情感元素引入Mask Language Model预训练任务 同[3]类似,Ke等人[6]在预训练语言模型中引入词级别的情感、词性知识。他们先给每个词预测词性信息,然后依据词性信息从SentiWordNet中推断其情感极性。基于获得的词性和情感信息,他们在一般的Masked Language Model基础上同时预测这些语言学标签,实现在预训练语言模型中注入情感知识。该模型在主流的情感分类、细粒度情感分析数据集上取得了目前最好的结果,证明引入词性和情感极性知识在预训练任务中的有效性。

图6在预训练语言模型中引入词级别的情感、词性知识

Sun等人[7]提出在面向属性的情感分类(ABSA)任务上,引入Stanford parser解析得到的依存树信息辅助识别评价对象相关的评价词。他们将GCN在依存树上学习得到的表示与BLSTM学习到的特征结合,判断句子针对评价对象的情感极性。

图7将GCN在依存树上学习得到的表示与BLSTM学习到的特征结合

在外部特征引入方式上,目前方法以两种方法为主:(1)直接作为特征输入模型(2)以多任务学习的方式,作为辅助任务与主任务一同训练。这些方法的区别主要在引入特征类别或者辅助任务的任务设计。

引入常识知识

除了情感词典、情感词向量、情感预训练语言模型、文本特征抽取器外,结构化的外部知识也是很常见的一种情感知识来源。它的特点是规模大,覆盖面广,蕴含丰富的实体、事件或者常识概念间相关关系知识。结构化知识中具备高质量的关系类型,因而适用于需要推理、泛化的情感分析任务。

一个典型的需要泛化的任务是跨领域文本情感分类任务。源端和目标端的评价对象、评价词等情感相关特征差异较大,训练时模型依赖的源端分类特征未必会在目标端文本中出现,如何将这些情感特征进行对齐是一个重要且富有挑战性的问题。一类方法是使用通用情感词典作为pivot信息,建立源端、目标端共享特征的对齐,但这类方法只考虑共享的情感词信息,且通过文本本身学习到的情感表达对齐也不充分、准确,同时无法捕获到不同领域之间评价对象之间链接关系。

而结构化外部知识正好弥补了这些缺点,它蕴含情感词到非情感词、不同领域评价对象之间的关联关系。近年由于图表示算法的进步,学者们能够更高效的对这些结构化外部知识加以利用。

在跨领域情感文档情感分类任务上,Ghosal等人[8]在ACL2020上提出KinGDOM算法, 利用ConceptNet为所有领域构建一个小规模知识图谱,然后找出每个文档中独有的名词、形容词、副词集合,再依据从中抽取出一个文档相关的子图,进而提供一个由知识库知识提取而来的特征表示,与文档本身的情感表示一起做最后的情感分类。

图8KinGDOM算法

类似地,在跨目标立场分类任务上,Zhang等人[9]利用SenticNet和EmoLex构建学习带情绪关系连接的语义-情绪图谱(SE-graph),并使用图卷积神经网络(GCN)学习节点表示。给定一段文本,他们使用SE-graph为每个词学习构建一个子图并学习其表示,得到的外部特征表示送入修改后的BLSTM隐层,与当前上下文特征进行融合。

图9基于SE-graph 使用GCN学习节点表示

这两个工作都使用外部结构知识,扩展了输入特征空间,利用知识库中的连接将源端和目标端的评价词、评价对象等特征进行对齐,极大地丰富了情感上下文信息。

3.总结

本文介绍了情感分析中引入外部知识的部分工作,简要介绍了现阶段情感分析常用的外部知识,从最常见的情感词典入手,逐步介绍基于情感词典的情感词向量、预训练语言模型,展示了使用多任务学习融合词性、依存句法等文本底层特征抽取器的工作,最后介绍了近期热门的使用结构化外部知识的文本情感迁移学习工作。我们可以看出,情感词典虽然最为简单,却是情感知识引入多种引入方式的基石,在情感分析算法中地位无出其右。

对于未来工作,一方面,由于目前的情感分析中知识引入的应用场景仍局限在情感分类任务中,有待扩展到情感抽取、情感(多样性)生成等各个情感分析任务上;另一方面,在情感分析专用预训练语言模型中融合结构化外部知识,增强预训练语言模型对情感分析相关世界知识的理解仍有待探索。

参考资料

[1]

刘挺,车万翔. 自然语言处理中的知识获取问题.

[2]

Teng et al. Context-Sensitive Lexicon Features for Neural Sentiment Analysis.

[3]

Qian et al. Linguistically Regularized LSTM for Sentiment Classification.

[4]

Tang et al. Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification.

[5]

Tian et al.SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis.

[6]

Xu et al.SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge.

[7]

Sun et al.Aspect-Level Sentiment Analysis Via Convolution over Dependency Tree.

[8]

Ghosal et al.KinGDOM: Knowledge-Guided DOMain Adaptation for Sentiment Analysis.

[9]

Zhang et al.Enhancing Cross-target Stance Detection with Transferable Semantic-Emotion Knowledge.

责任编辑:xj

原文标题:基于知识引入的情感分析

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136233
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123903
  • 情感分析
    +关注

    关注

    0

    文章

    14

    浏览量

    5350

原文标题:基于知识引入的情感分析

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    贴片电容精度J±5%的一些详细知识

    贴片电容精度J±5%表示电容的实际值与标称值之间的偏差范围在±5%以内 ,以下是关于贴片电容精度J±5%的一些详细知识、精度等级含义 J±5% :字母“J”贴片电容的标识中通常
    的头像 发表于 11-20 14:38 134次阅读
    贴片电容精度J±5%的<b class='flag-5'>一些</b>详细<b class='flag-5'>知识</b>

    用快手电商 API 实现快手小店商品评论情感分析

    的API接口,允许开发者访问快手小店的数据,包括商品评论。本文将步步指导您如何利用快手电商API获取评论数据,并实现情感分析功能。整个过程基于Python语言,结构清晰、易于操作,确保您能快速上手。 1. 准备
    的头像 发表于 08-26 15:08 347次阅读
    用快手电商 API 实现快手小店商品评论<b class='flag-5'>情感</b><b class='flag-5'>分析</b>

    罗姆贴片电阻器热设计要点研讨会亮点回顾

    除此以外,罗姆君选取了研讨会中一些代表性的提问在这里与大家分享,供大家回顾。
    的头像 发表于 08-13 09:40 1.5w次阅读

    凯睿德制造入选2025年《Gartner MES市场指南》代表性供应商

    葡萄牙波尔图 2025年7月16日 /美通社/ -- 作为先进的制造执行系统(MES)的领导者及ASMPT 子公司,凯睿德制造被Gartner于2025年5月发布的《MES 市场指南》评选为“代表性
    的头像 发表于 07-17 10:24 341次阅读

    2025年市场主流AI MCU品牌及其代表性型号进行系统盘点#2025.6

    将对2025年市场上主流AI MCU品牌及其代表性型号进行系统盘点,从国际巨头到国内新锐,全面呈现这领域的技术发展趋势与应用前景。 、国际品牌AI MCU产品线 1. 恩智浦(NXP) - i.MX
    的头像 发表于 07-02 09:46 4943次阅读

    大模型半导体行业的应用可行分析

    的应用,比如使用机器学习分析数据,提升良率。 这一些大模型是否真的有帮助 能够解决工程师的知识断层问题 本人纯小白,不知道如何涉足这方面 应该问什么大模型比较好,或者是看什么视频能够
    发表于 06-24 15:10

    关于芯片设计的一些基本知识

    芯片的设计理念众所周知,芯片拥有极为复杂的结构。以英伟达的B200芯片为例,巴掌大的面积上,塞入了2080亿个晶体管。里面的布局,堪称个异次元空间级的迷宫。英伟达B200芯片如此复杂的架构
    的头像 发表于 06-11 12:16 788次阅读
    关于芯片设计的<b class='flag-5'>一些</b>基本<b class='flag-5'>知识</b>

    Debian和Ubuntu哪个好一些

    兼容对比Debian和Ubuntu哪个好一些,并为您揭示如何通过RAKsmart服务器释放Linux系统的最大潜能。
    的头像 发表于 05-07 10:58 853次阅读

    FX2LP USB上配置GPIF中断时遇到一些问题,求解决

    你好,我 FX2LP USB 上配置 GPIF 中断时遇到一些问题。 我启用了 INT4 中断并从 GPIF 中选择了源 INT4,然后启用了 GPIF 完成中断,但我看不到中断 4 工作。 我该如何做呢?
    发表于 05-06 08:00

    万里红入选安全大模型及Agentic AI赋能网络安全代表性厂商

    近日,专注于网络安全和数字风险管理的第三方研究机构安全牛,正式发布了《Agentic AI安全技术应用报告》(以下简称“报告”)。报告依托多方调研分析,对Agentic AI发展背景、安全框架、建设实施、产业能力、代表性厂商、落地应用案例等诸多方面进行了研究。
    的头像 发表于 04-30 14:19 839次阅读

    电机微机控制系统可靠性分析

    长期可靠地工作,这问题牵涉到许多有关系统抗干扰设计、故障自诊断、自恢复等有关可靠知识和技术。本文着重介绍与可靠有关的
    发表于 04-29 16:14

    如何实现MC33774ICSimulink环境中使用基于模型的设计?

    我想熟悉如何实现MC33774IC Simulink 环境中使用基于模型的设计。 尽管 MATLAB 提供了一些示例文件,但它们似乎是最终版本。要更深入地了解如何配置MC33774,我正在寻找
    发表于 04-10 08:05

    树莓派自动化控制项目中的一些潜在应用

    自动化控制项目中的一些潜在应用。之前,我们已经为Arduino平台探讨了相同的话题。我们确定Arduino是个出色的教育工具,但由于一些限制,它无法工业环境中完全
    的头像 发表于 03-25 09:45 477次阅读
    树莓派<b class='flag-5'>在</b>自动化控制项目中的<b class='flag-5'>一些</b>潜在应用

    科普知识丨热重分析仪操作指南

    热重分析材料研究、化学分析等领域应用广泛,精准操作对获取可靠数据至关重要,以下为其操作流程介绍。上海和晟HS-TGA-101热重分析仪准备工作
    的头像 发表于 02-28 10:26 920次阅读
    科普<b class='flag-5'>知识</b>丨热重<b class='flag-5'>分析</b>仪操作指南

    芯盾时代入选《API安全技术应用指南(2024版)》API安全十大代表性厂商

    的零信任业务安全产品方案提供商,凭借API安全领域领先的产品方案、丰富的实践经验和优秀的市场表现,成功入选“API安全领域十大代表性厂商”。 安全牛点评   芯盾时代API安全能力 1.基于API安全能力,持续深耕于业务安全,进
    的头像 发表于 12-18 11:04 1835次阅读
    芯盾时代入选《API安全技术应用指南(2024版)》API安全十大<b class='flag-5'>代表性</b>厂商