0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种基于能带结构调控电极材料电压的策略

ExMh_zhishexues 来源:知社学术圈 作者:知社学术圈 2020-10-11 10:21 次阅读

基于能带调控策略,研究者通过p型掺杂方法,设计出超高能量密度、无过渡金属的碳基正极新家族。该工作从电化学储能材料的内禀构效关系出发建立其性能的链条式计算和评估范式,为研发新型高比能电极材料开辟了一条全新的思路。

研发高比容量的正极材料,对于提高锂离子电池能量密度,满足电动汽车、消费电子、规模储能等行业需求至关重要。现有商业化正极材料多含有镍、钴、锰等过渡金属元素,存在原料成本与环境保护压力的同时,过渡金属元素的可变价电子数也严重制约了其储锂容量,进而制约了电池的容量和能量密度。利用氧参与变价的富锂正极可以在一定程度上提高电极比容量,但也同时导致了电池可逆循环稳定性与安全性问题。

鉴于上述挑战,用较轻元素取代较重的过渡金属元素是可行的锂离子电池正极材料设计思路之一。碳基材料作为具有最丰富杂化类型的材料之一,已被广泛研究用作锂离子电池负极。然而目前基于不同结构或电子杂化性质(如2D sp2、3Dsp2、3Dsp2+sp3)调控的二维与三维碳材料的嵌锂电位均小于0.5 V,还远不能满足正极材料的电位要求。那么,能否通过电位提升策略,设计出不含过渡金属的新型碳基锂/钠离子电池正极材料?

近日,江西师范大学欧阳楚英教授和上海大学施思齐教授在国际上首次提出了一种基于能带结构调控电极材料电压的策略:通过p型掺杂实现了碳基材料锂/钠离子脱嵌电位与脱嵌结构稳定性的显著提升,并设计了一类新型无过渡金属、超高能量密度的锂/钠离子电池正极材料。

研究者首先通过第一性原理计算,系统地对比分析了不同sp2/sp3杂化类型碳基材料的嵌锂电位与体系费米能级的关系。发现由于费米能级限制(约为–4.31 eV),石墨电极的嵌锂电位较低(约为0.2 V),而氟原子的强诱导效应可有效调控碳基材料电位,譬如氟化后(CF)的石墨体系杂化类型从sp2转变为sp3,从而使其嵌锂电位提升至2.29 V。然而,氟化石墨费米面处电子填充饱和的特性导致其在嵌锂过程中结构发生不可逆转变,因此难以用作锂离子电池正极。

受到以上发现的启示,研究者创新性地在氟化石墨材料中用硼原子替换碳原子,从而在体系价带顶处引入空穴(p型掺杂),有效地降低了离子嵌入的轨道能级,进而将BCF2/B2C2F2材料嵌锂电位从2.29 V提升至3.49/3.63 V (示意图1)。同时,该p型掺杂的B-C-F材料中费米面处电子的不饱和性极大增强了体系在嵌锂过程中电子结构的稳定性,并且由于B-F之间具有较强的库伦作用,最终使得材料嵌锂态具有良好的结构稳定性。

示意图1:Li(Na)BCF2/Li(Na)B2C2F2正极与石墨负极的离子嵌入电位比较。

因此,该p型掺杂策略“一箭双雕”地实现了:1)降低碳基材料的费米能级,进而提升嵌锂电位;2)提升材料嵌锂态的结构稳定性,解决了CF电极在电化学过程中发生分解反应使其只能用于一次电池的难题。

基于上述能带调控策略所设计的LiBCF2与LiB2C2F2材料锂离子脱嵌电位分别为3.49与3.63 V,可媲美基于过渡金属元素的正极材料。此外,其理论容量分别达到395.4 与295.8 mAh g-1,对应的能量密度可达1379.9 与1073.8 Wh kg-1(示意图2)。同时,其作为钠离子电池正极也显现出优异的性能。因此,Li(Na)BCF2和Li(Na)B2C2F2作为由B、C、F等轻元素构筑且不含Ni、Co、Mn等过渡金属元素的一类新型正极材料,成功实现了相比于现有各种商业化正极材料容量的突破。

示意图2:电池开路电压与电解质电化学窗口;石墨、常见锂离子电池正极和LiBCF2/LiB2C2F2材料的电压、容量与能量密度比较。

通过建立材料嵌锂/钠电位与能带结构的直观联系图像,该p型掺杂方法实现了碳基材料嵌锂/钠电位与结构稳定性的大幅提升,并极具潜力推广到其它基于电荷转移的离子脱/嵌材料体系,为理性设计新型高能量密度正极开辟了一条全新的思路。另外,该工作建立了一套链条式地从晶体结构搜索(CALYPSO软件)、声子谱、电子结构、电压平台、离子迁移势垒和相图计算(材料热力学稳定性评估和合成途径设计)等多角度综合评估电化学储能材料性能的研究范式。

上述研究成果以“Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy-density”为题发表在《国家科学评论》(National Science Review)。著名锂电池学者Michel Armand教授(锂电池产业奠基人之一,提出了摇椅式电池、固态聚合物锂电池、磷酸铁锂碳包覆等多个原创性概念)为该工作撰写了评论文章并给予高度评价,认为“该工作是碳基正极领域的重要突破与电池设计的新标杆,有助于突破电池能量密度桎梏,同时规避过渡金属材料的使用……以p型掺杂降低石墨材料费米能级这一策略的成功,在更广泛意义上对于指导新型高比能电极材料的理性设计和实验研究具有积极而重大的前瞻性意义。”

[英文评价原文:“……achieved a breakthrough in the design of carbonaceous materials as cathodes for rechargeable LIBs/SIBs. This is a new paradigm for battery design, which is helpful in addressing issues related to the battery energy-density limit as well as the transition-metal cost and shortages……In a broader sense, the success of the full shell p-doping strategy to shift-down the Fermi-level of graphite ……can help guide a rational design of these compounds in the future and inform prospective theoretical and experimental researches in this field.”]

江西师范大学研究生王志强和上海大学王达副研究员为该文共同第一作者,江西师范大学欧阳楚英教授和上海大学施思齐教授为共同通讯作者,苏州大学尹万健教授、吉林大学王彦超教授、中国科学院物理研究所陈立泉院士和悉尼大学Maxim Avdeev教授等共同参与了研究。北京计算科学中心魏苏淮教授、美国加州大学欧文分校武汝前教授、美国陆军实验室许康研究员、南方科技大学张文清教授、中国科学院物理研究所李泓研究员、中国工程物理研究院电子工程研究所崔艳华研究员和上海大学郭炳焜教授给予了指导和帮助。该项研究得到了国家自然科学基金优秀青年科学基金等项目的支持。

责任编辑:xj

原文标题:理性设计孕育碳基正极新家族:超高能量密度、无过渡金属 | NSR

文章出处:【微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 正极材料
    +关注

    关注

    4

    文章

    285

    浏览量

    18272
  • 碳基半导体
    +关注

    关注

    1

    文章

    6

    浏览量

    8501
  • 电极材料
    +关注

    关注

    0

    文章

    66

    浏览量

    6318

原文标题:理性设计孕育碳基正极新家族:超高能量密度、无过渡金属 | NSR

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电极开路输出接线图

    电极开路门的内部结构设计会直接影响其开关速度。例如,电极间的距离、材料选择、通道长度等都会对开关速度产生影响。
    的头像 发表于 03-18 17:10 285次阅读
    集<b class='flag-5'>电极</b>开路输出接线图

    关于能带隙基准源的理解

    看了关于能带隙基准源的的介绍,其原理是利用了正温度系数的电压产生器和具有负温度系数的电压,从而得到具有零温度系数的基准电压。 第张图是基
    发表于 01-27 11:56

    燃料电池膜电极密封材料解析

    燃料电池膜电极密封材料解析 燃料电池是一种能够将氢气和氧气反应产生电能的设备。膜电极是燃料电池中的关键部件之一,它将氢气和氧气分别传输到阳极和阴极,并同时限制氢和氧的混合以避免安全问题
    的头像 发表于 01-18 11:43 300次阅读

    多路电压比较器的线与结构

    电压比较器的输出结构是否为常见的集电极输出或者射极输出结构,正常状态下保持个电平,输入发生翻转时输出翻转到另
    发表于 01-18 09:44

    氮化镓开关管的四个电极是什么

    来了解一下氮化镓开关管的基本结构。它由氮化镓(GaN)和铝镓氮化物(AlGaN)等半导体材料组成,这些材料具有优异的电特性,能够实现高电压、高频率和高功率的开关操作。而四个
    的头像 发表于 12-27 14:39 454次阅读

    IGBT集电极电压超过额定电压会发生什么?

    IGBT集电极电压超过额定电压会发生什么?
    的头像 发表于 12-08 16:55 550次阅读
    IGBT集<b class='flag-5'>电极</b><b class='flag-5'>电压</b>超过额定<b class='flag-5'>电压</b>会发生什么?

    三极管集电极电压和基极电压

    ,对其工作状态和性能具有重要影响。本文将详细介绍三极管集电极电压和基极电压的意义、特性和应用。 首先,我们来了解一下三极管的基本结构和工作原理。三极管由三个掺杂不同类型的半导体
    的头像 发表于 12-07 14:46 1924次阅读

    平衡PN结能带图讲解

    上期简单描述了下PN结的基本结构和耗尽区的形成过程,为方便后续定量研究,还是要从能带图入手,先看下平衡PN结的能带图吧,通过能带图,可以获得PN结的很多有用的信息。
    的头像 发表于 11-30 18:25 3692次阅读
    平衡PN结<b class='flag-5'>能带</b>图讲解

    AD5940用于测量EDA,对电极有何要求,例如阻力、材料、体积等?

    AD5940用于测量EDA,对电极有何要求,例如阻力、材料、体积等?
    发表于 11-30 08:28

    用于微波段的可调超材料吸波器设计

    材料一种由人工设计的周期性亚波长单元结构构成的电磁复合材料,传统超材料一旦结构确定,其电磁特
    的头像 发表于 10-17 15:04 671次阅读
    用于微波段的可调超<b class='flag-5'>材料</b>吸波器设计

    电压放大器在铁电材料表征中的应用有哪些

    电压放大器在铁电材料表征中具有广泛的应用。铁电材料是一类特殊的功能材料,具有独特的电荷分布和结构变化特性,在电子器件、传感器、存储器等领域具
    的头像 发表于 10-16 11:52 218次阅读
    <b class='flag-5'>电压</b>放大器在铁电<b class='flag-5'>材料</b>表征中的应用有哪些

    一种结构化道路环境中的视觉导航系统详解

    根据结构化道路环境的特点提出了一种将边沿检测和道路环境知识相结合的机器视觉算法 , 并结合基于行为响应的路径规划方法和智能预瞄控制方法 , 实现了套基本的机器人视觉导航系统 . 在自主机器人实验
    发表于 09-25 07:23

    二极管的结构和分类

    ,安于N区的电极称为阴极。二极管的符号如下图中的4所示。 二、二极管的分类 1、根据基片材料分类 根据基片材料不同,二极管分为锗二极管和硅二极管。锗二极管以本征锗材料为基片,硅二极管以
    的头像 发表于 09-24 15:37 4262次阅读
    二极管的<b class='flag-5'>结构</b>和分类

    为什么砷化镓是半导体材料 砷化镓晶体的结构特点

    砷化镓是一种半导体材料。它具有优异的电子输运性能和能带结构,常用于制造半导体器件,如光电器件和功率器件等。砷化镓的禁带宽度较小,使得它在电子和光学应用中具有重要的地位。
    发表于 07-03 16:07 4840次阅读

    压敏电阻不是一种随两端电压改变而阻值改变的电阻吗?

    压敏电阻不是一种随两端电压改变而阻值改变的电阻吗?(就是到了定的电压以后压敏电阻阻值突然变小)为什么初中的题目很多都说它是随压力而改变的电阻?压敏电阻明明跟压力没关系
    发表于 05-08 14:39