0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子互联网正在兴起,量子网络未来触手可及

独爱72H 来源:网络整理 作者:佚名 2020-04-02 16:14 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

(文章来源:网络整理)

今天的互联网是黑客的乐园。从不安全的通信连接到云中的数据保护不足,漏洞无处不在。但是,如果量子物理学家们有他们自己的方法,这些弱点很快就会消失。他们想要建立一个量子网络,在这个网络中,信息的创建、存储和移动都以一种反映量子世界奇异行为的方式进行。从“经典”网络的诸多限制中解放出来,这些系统可以提供一定程度的隐私、安全和计算能力,这在今天的互联网上是不可能实现的。

尽管完全实现量子网络仍是一个遥远的愿景,但最近在传输、存储和操纵量子信息方面取得的突破,已使一些物理学家相信,一个简单的原理验证迫在眉睫。从帮助光子改变颜色的钻石和晶体中的缺陷,到充当幽灵网络节点的无人机,研究人员正在利用各种奇异材料和技术进行量子探索。许多人说,第一阶段将是使用标准光纤连接三个至少相距50至100公里的小型量子设备的量子网络。

QKD涉及到一方,比如Alice,将量子位发送给Bob, Bob测量量子位(Alice和Bob首次出现在1978年关于量子密码学的论文中,现在已经成为量子网络中节点的占位符)。只有在特定类型的测量中,Bob才会得到与Alice在量子位元中编码的相同的值。Alice和Bob可以通过一个公共通道比较注释,以确定这些度量值是什么,而不需要共享量子位值。然后,它们可以使用这些私有值创建一个秘密共享密钥来加密经典消息。至关重要的是,如果入侵者拦截了量子位元,Alice和Bob就能探测到入侵,丢弃量子位元,然后开始——理论上一直持续到没有人窃听量子通道为止。

去年7月,使用量子密钥分发密钥的速度达到了创纪录的每秒6.5千比特,使用的光纤长度超过400公里。相比之下的商用系统,比如总部位于日内瓦的公司销售的系统,可以提供超过50公里的QKD光纤。

理想情况下,量子网络将比QKD做得更多。下一步将是直接在节点之间传输量子态。虽然使用光子偏振编码的量子位元可以通过光纤发送(就像QKD所做的那样),但是使用这样的量子位元来传输大量的量子信息是有问题的。光子可能在传输过程中被散射或吸收,也可能只是无法在探测器中注册,导致传输通道不可靠。幸运的是,有一种更可靠的方法来交换量子信息——通过使用量子系统的另一个特性,称为纠缠。

当两个粒子或量子系统相互作用时,它们会相互纠缠。一旦纠缠,两个系统都用一个量子态来描述,所以测量一个系统的状态会立即影响另一个系统的状态,即使它们相距几公里。爱因斯坦把纠缠称为“远距离的幽灵行为”,它是量子网络的宝贵资源。想象两个网络节点,Alice和Bob,每个节点由一些孤立的物质组成(编码和存储量子态的最明显和最可靠的基板)。这种“物质节点”可以通过一个包含纠缠光子交换的过程相互纠缠。

使用纠缠的物质节点,Alice可以利用她的纠缠向Bob发送一个完整的量子位元,而不需要实际传输一个物理量子位元,这使得传输简单而安全。这里的关键是,一旦节点之间建立了纠缠,将量子位元从Alice传输到Bob的协议就是确定的。但是要在长距离的情况下做到这一点,首先需要分配纠缠——通常是通过标准的光纤网络。今年1月,兰宁在因斯布鲁克的团队报告说,他们创造了50多公里长的光纤在物质和光之间产生纠缠的记录。

对于物质,兰宁的研究小组使用了一种所谓的“捕获离子”——一种利用电磁场被限制在光学腔内的单个钙离子。当用激光操作时,离子最终将量子比特编码为两种能量状态的叠加,同时还发射出光子,量子比特编码为偏振状态。离子和光子中的量子位元纠缠在一起。任务是:通过光纤发送光子,同时保持纠缠。

不幸的是,被捕获的离子发出的光子波长为854纳米,这在光纤中不会持续很长时间。因此,兰宁的团队将发射出的光子发射到一种叫做非线性晶体的东西中,然后用强大的激光泵浦。整个相互作用将入射光子转换成另一种“电信”波长,这种波长非常适合光纤。因斯布鲁克研究小组随后将光子注入一段50公里长的光纤中。一旦到达另一端,他们测试了离子和光子,看它们是否仍然纠缠在一起。他们。

尽管他们还没有通过任何长度的光纤传输一个钻石纠缠的远程波长光子,Hanson相信他们可以做到,然后使用纠缠交换将钻石NV中心缠绕在30公里之外。他们的下一个目标是利用荷兰三个城市之间现有的光纤基础设施,将节点缠结在一起。在荷兰,可以接受这种最先进的实验。

因斯布鲁克和代尔夫特的研究小组都只研究一种物质来存储和纠缠量子位元。但现实生活中的量子网络可能在每个节点上使用不同类型的材料,这取决于手头的具体任务——例如量子计算或量子传感。量子节点,除了操纵量子位元之外,可能还必须将它们存储在所谓的量子存储器中,时间很短。

光子波长也被设计用来交叉连接不同的传输系统:一端是光纤(1535 nm),另一端是卫星通信(794 nm)。后者很重要,因为如果量子网络要走向洲际,纠缠将需要通过卫星来分布。2017年,由中国科学技术大学潘建伟领导的团队利用中国量子卫星“墨子”)在青藏高原地面站和西南地区地面站之间分配纠缠。

光子波长也被设计用来交叉连接不同的传输系统:一端是光纤(1535 nm),另一端是卫星通信(794 nm)。后者很重要,因为如果量子网络要走向洲际,纠缠将需要通过卫星来分布。2017年,由中国科学技术大学潘建伟领导的团队利用中国量子卫星“墨子”)在青藏高原地面站和西南地区地面站之间分配纠缠。

在迈向全面运作的量子网络的过程中,挑战依然存在。可靠的量子存储器就是其中之一。另一个重要的缺失部分是使用所谓的量子中继器将量子链路扩展到任意长距离的能力。量子态不能像经典信息那样简单地复制。量子节点将需要复杂的量子逻辑门,以确保在与环境相互作用造成损失的情况下仍然保持纠缠。兰宁表示:“这肯定是下一个重大挑战之一。”

尽管如此,建立一个量子网络的基本要素已经就位,这个网络至少可以连接三个城市,或许最终可以连接整个世界。汉森说:“我们现在有了平台,可以第一次探索真正的量子网络。”更复杂的网络正在召唤我们。“没有保证。如果我们成功了,我们就能做一些很酷的事情。”
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子通信
    +关注

    关注

    3

    文章

    302

    浏览量

    25329
  • 量子网络
    +关注

    关注

    1

    文章

    22

    浏览量

    8392
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    德国斯图加特大学突破量子中继器技术

    为实现量子互联网,经济实惠的光纤基础设施必不可少。但光的传输距离有限,传统光信号需定期增强,而量子信息无法简单放大、复制或转发。为此,物理学家开发量子中继器,在
    的头像 发表于 11-19 16:02 130次阅读
    德国斯图加特大学突破<b class='flag-5'>量子</b>中继器技术

    IQM与NVIDIA携手开展NVQLink合作,推动扩展量子纠错技术发展

    应用的关键环节。 NVQLink是一款与NVIDIA CUDA-Q深度集成的开放且互操作平台,旨在连接量子硬件与人工智能超级计算系统。该平台通过在量子计算机与GPU加速计算资源之间提供低延迟、高带宽的连接,实现对复杂计算任务的
    的头像 发表于 10-31 10:30 214次阅读

    新思科技后量子密码学解决方案助力提升网络安全水平

    量子计算的兴起,在网络安全领域引发了既满怀期待又深感忧虑的复杂情绪。一方面,量子计算机有望在攻克复杂乃至关乎生存的难题上实现突破。另一方面,它可能让现行加密方法失效。
    的头像 发表于 06-23 10:00 845次阅读

    联网未来发展趋势如何?

    ,人们才会更加信任和接受物联网技术。 综上所述,物联网行业的未来发展趋势非常广阔。智能家居、工业互联网、智慧城市、医疗保健以及数据安全和隐私保护都将成为物
    发表于 06-09 15:25

    量子计算最新突破!“量子+AI”开启颠覆未来的指数级革命

    量子比特同时处于0和1的叠加态,使量子计算机在处理并行问题时具备指数级加速潜力。量子纠缠,即多个量子比特间形成强关联,即使物理隔离,状态变
    的头像 发表于 05-28 00:40 1.2w次阅读
    <b class='flag-5'>量子</b>计算最新突破!“<b class='flag-5'>量子</b>+AI”开启颠覆<b class='flag-5'>未来</b>的指数级革命

    玻色量子重磅发布量子奇点计划

    2025年4月,玻色量子旗下开物量子开发者社区正式发起共筑量子计算应用新生态计划——“量子奇点计划”,计划集“量子应用创新基金+
    的头像 发表于 05-09 16:14 794次阅读

    未来产业 | 量子科技核心材料体系

    正文量子科技作为下一代信息技术的核心领域,正推动材料科学进入“按需设计”的新阶段。其涉及的新材料不仅突破了传统材料的物理极限,更通过量子效应重构了材料的功能逻辑。以下从技术路径、产业变革和投资机遇
    的头像 发表于 04-07 06:50 2230次阅读
    <b class='flag-5'>未来</b>产业 | <b class='flag-5'>量子</b>科技核心材料体系

    智能,触手可及:揭秘高灵活、高精度仿生机器手的操作与实现

    本项目打造了一款高灵活、高精度、超安全的仿生机器手,让人形机器人也能轻松拿捏,实现“触手可及”的智能操作。不管是抓、搬、放,还是清扫、整理、照顾,它都能一手搞定!——南京信息工程大学-触手可及团队一
    的头像 发表于 03-21 17:23 1301次阅读
    智能,<b class='flag-5'>触手可及</b>:揭秘高灵活、高精度仿生机器手的操作与实现

    基于玻色量子相干光量子计算机的混合量子经典计算架构

    近日,北京玻色量子科技有限公司(以下简称“玻色量子”)与北京师范大学、中国移动研究院组成的联合研究团队提出一种基于相干光量子计算机的混合量子-经典计算架构,结合
    的头像 发表于 03-10 15:43 943次阅读
    基于玻色<b class='flag-5'>量子</b>相干光<b class='flag-5'>量子</b>计算机的混合<b class='flag-5'>量子</b>经典计算架构

    量子处理器是什么_量子处理器原理

    量子处理器(QPU)是量子计算机的核心部件,它利用量子力学原理进行高速数学和逻辑运算、存储及处理量子信息。以下是对量子处理器的详细介绍:
    的头像 发表于 01-27 11:53 1786次阅读

    玻色量子上线550量子比特云服务

    2025年1月,由北京玻色量子科技有限公司(简称“玻色量子”)自研的相干光量子计算云平台正式上线,支持550计算量子比特云服务(以下简称“
    的头像 发表于 01-13 09:11 1876次阅读

    互联网是什么意思

    互联网,通常称为云计算,是一种基于互联网的计算模式,它允许用户通过网络访问和使用远程服务器上的存储、管理和处理数据的资源。主机推荐小编为您整理发布云互联网的详细解释。
    的头像 发表于 01-07 09:50 1013次阅读

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用量子叠加态和纠缠效应进行信息传递的新型通信方式。它基于
    的头像 发表于 12-19 15:53 2146次阅读

    量子通信的基本原理 量子通信网络的构建

    量子通信的基本原理 1. 量子叠加原理 量子叠加原理是量子通信的基础之一。在量子力学中,一个量子
    的头像 发表于 12-19 15:50 3566次阅读

    量子通信技术的应用 量子通信与传统通信的区别

    通信能够确保军事指挥和情报传递的高度保密性,任何企图窃取情报的行为都会被察觉,无法被窃听的特性使其在军事领域发挥着至关重要的作用。 量子通信可以应用于通信密钥生成与分发系统,具有向未来战场覆盖区域内任意两个用户分
    的头像 发表于 12-19 15:45 2823次阅读