0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Explainable AI旨在提高机器学习模型的可解释性

倩倩 来源:互联网分析沙龙 2020-03-24 15:14 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

Google LLC 在其云平台上推出了一项新的“ 可解释AI ”服务,旨在使机器学习模型做出决策的过程更加透明。

谷歌表示,这样做的想法是,这将有助于建立对这些模型的更大信任。这很重要,因为大多数现有模型往往相当不透明。只是不清楚他们如何做出决定。

Google Cloud AI战略总监Tracy Frey在 今天的博客中解释说,Explainable AI旨在提高机器学习模型的可解释性。她说,这项新服务的工作原理是量化每个数据因素对模型产生的结果的贡献,帮助用户了解其做出决定的原因。

换句话说,它不会以通俗易懂的方式来解释事物,但是该分析对于首先构建机器学习模型的数据科学家和开发人员仍然有用。

可解释的AI有进一步的局限性,因为它提出的任何解释都将取决于机器学习模型的性质以及用于训练它的数据。

她写道:“任何解释方法都有局限性。” “一方面,AI解释反映了数据中发现的模型的模式,但它们并未揭示数据样本,总体或应用程序中的任何基本关系。我们正在努力为客户提供最直接,最有用的解释方法,同时保持其局限性透明。”

但是,可解释的AI可能很重要,因为准确解释特定机器学习模型为何得出结论的原因对于组织内的高级管理人员很有用,他们最终负责这些决策。对于高度严格的行业来说,这尤其重要,而信心绝对至关重要。谷歌表示,对于处于这一位置的许多组织而言,目前没有任何可解释性的人工智能已经超出范围。

在相关新闻中,Google还发布了所谓的“模型卡”,作为其Cloud Vision应用程序编程界面的面部检测和对象检测功能的文档。

这些模型卡详细说明了这些预先训练的机器学习模型的性能特征,并提供了有关其性能和限制的实用信息。谷歌表示,其目的是帮助开发人员就使用哪种模型以及如何负责任地部署它们做出更明智的决定。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6244

    浏览量

    110230
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136215
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AI模型的配置AI模型该怎么做?

    STM32可以跑AI,这个AI模型怎么搞,知识盲区
    发表于 10-14 07:14

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    配备科学发现仍需人类的直觉和灵感 ④正价可解释性和透明 ⑤解决伦理和道德问题六、AI芯片用于“AI科学家”系统 AI芯片的作用:七、用量子
    发表于 09-17 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的未来:提升算力还是智力

    、浪费资源与破坏环境 二、用小模型代替大模型 1、强化学习 2、指令调整 3、合成数据 三、终身学习与迁移学习 1、终身
    发表于 09-14 14:04

    Cognizant加速AI模型企业级开发

    全球最先进的AI/机器学习模型 新泽西州蒂内克2025年7月31日 /美通社/ -- Cognizant(纳斯达克股票代码:CTSH)今日宣布推出A
    的头像 发表于 07-31 17:25 593次阅读

    模型在半导体行业的应用可行分析

    有没有这样的半导体专用大模型,能缩短芯片设计时间,提高成功率,还能帮助新工程师更快上手。或者软硬件可以在设计和制造环节确实有实际应用。会不会存在AI缺陷检测。 能否应用在工艺优化和预测
    发表于 06-24 15:10

    中国科学院西安光机所在计算成像可解释性深度学习重建方法取得进展

    图1 MDFP-Net网络结构 近日,中国科学院西安光机所空间光学技术研究室在计算成像可解释性深度学习重建方法研究取得创新进展。相关研究成果发表于计算机视觉与图形学领域国际著名期刊
    的头像 发表于 06-09 09:27 504次阅读
    中国科学院西安光机所在计算成像<b class='flag-5'>可解释性</b>深度<b class='flag-5'>学习</b>重建方法取得进展

    算法进化论:从参数剪枝到意识解码的 AI 革命

    电子发烧友网报道(文 / 李弯弯)在人工智能领域,算法创新无疑是推动技术持续前行的核心动力源泉。近些年来,随着深度学习、强化学习等前沿技术相继取得重大突破,AI 算法在效率提升、可解释性
    的头像 发表于 04-19 00:38 2181次阅读

    **【技术干货】Nordic nRF54系列芯片:传感器数据采集与AI机器学习的完美结合**

    【技术干货】nRF54系列芯片:传感器数据采集与AI机器学习的完美结合 近期收到不少伙伴咨询nRF54系列芯片的应用与技术细节,今天我们整理几个核心问题与解答,带你快速掌握如何在nRF54上部署
    发表于 04-01 00:00

    AI模型在汽车应用中的推理、降本与可解释性研究

    佐思汽研发布《2024-2025年AI模型及其在汽车领域的应用研究报告》。 推理能力成为大模型性能提升的驱动引擎 2024下半年以来,国内外大模型公司纷纷推出推理
    的头像 发表于 02-18 15:02 1814次阅读
    <b class='flag-5'>AI</b>大<b class='flag-5'>模型</b>在汽车应用中的推理、降本与<b class='flag-5'>可解释性</b>研究

    了解DeepSeek-V3 和 DeepSeek-R1两个大模型的不同定位和应用选择

    ) 扩展上下文+结构化推理(支持更长复杂输入) 响应控制 通用流畅优先 强化分步解释与中间过程可解释性 3. 技术架构差异 技术点 DeepSeek-V3 DeepSeek-R1 训练数据 通用语料+部分
    发表于 02-14 02:08

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器
    的头像 发表于 02-13 09:39 617次阅读

    小白学解释性AI:从机器学习到大模型

    科学AI需要可解释性人工智能的崛起,尤其是深度学习的发展,在众多领域带来了令人瞩目的进步。然而,伴随这些进步而来的是一个关键问题——“黑箱”问题。许多人工智能模型,特别是复杂的
    的头像 发表于 02-10 12:12 1148次阅读
    小白学<b class='flag-5'>解释性</b><b class='flag-5'>AI</b>:从<b class='flag-5'>机器</b><b class='flag-5'>学习</b>到大<b class='flag-5'>模型</b>

    AI模型思维链功能升级,提升透明度与可信度

    的透明度。 值得注意的是,此次更新发生在DeepSeek-R1推理模型发布之后。作为OpenAI的竞争对手,DeepSeek-R1同样具备展示其反应背后思维过程的能力。两大模型在这一功能上的不谋而合,无疑彰显了AI领域对于提升决
    的头像 发表于 02-10 09:06 785次阅读

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    设计专门的编码器处理视觉、触觉、位置等不同类型的传感器数据,再用cross-attention机制将它们对齐到同一语义空间。这种设计不仅提高模型的感知能力,还增强了推理过程的可解释性。在实验中,RT-1
    发表于 12-24 15:03

    【「大模型启示录」阅读体验】对大模型更深入的认知

    能在教育、设计、游戏、广告等领域发挥如此重要的作用。这些内容让我对大模型的潜力充满了期待,也让我对AI技术的未来充满了好奇。 书中还提到了大模型与DevOps的结合,以及它们如何提高
    发表于 12-20 15:46