0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微机电系统的三种材料和加工技术

汽车玩家 来源:传感器专家网 作者:传感器专家网 2020-03-07 11:19 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

微机电系统(Microelectromechanical Systems,缩写为 MEMS)是将微电子技术与机械工程融合到一起的一种工业技术,它的操作范围在微米范围内。微机电系统在日本被称作微机械(micromachines),在欧洲被称作微系统技术(Micro Systems Technology,MST)。

微机电设备的尺寸通常在20微米到一毫米之间,它们内部通常包含一个微处理器和若干获取外界信息的微型传感器。微机电系统的加工技术由半导体加工技术改造而来,使其可以应用到实际当中,而后者一般用来制造电子设备。微机电系统有多种原材料和制造技术,根据应用、市场等性能需求的不同进行选择。

一、MEMS的材料

1、硅

硅是用来制造集成电路的主要原材料。由于在电子工业中已经有许多实用硅制造极小的结构的经验,硅也是微机电系统非常常用的原材料。硅的物质特性也有一定的优点。单晶体的硅遵守胡克定律,几乎没有弹性滞后的现象,因此几乎不耗能,其运动特性非常可靠。此外硅不易折断,因此非常可靠,其使用周期可以达到上兆次。

一般微机电系统的生产方式是在基质上堆积物质层,然后使用平板印刷和蚀刻的方法来让它形成各种需要的结构。

2、高分子材料

虽然电子工业对硅加工的经验是非常丰富和宝贵的,并提供了很大的经济性,但是纯的硅依然是非常昂贵的。高分子材料非常便宜,而且其性能各种各样。使用注射成形、压花、立体光固化成形等技术也可以使用高分子材料制造微机电系统,这样的系统尤其有利于微液体应用,比如可携测血设备等。

3、金属

金属也可以用来制造微机电系统。虽然比起硅来金属缺乏其良好的机械特性,但是在金属的适用范围内它非常可靠。

二、MEMS加工技术

①、传统机械加工方法

传统机械加工方法指利用大机器制造小机器 ,再利用小机器制造微机器 。可以用于加工一些在特殊场合应用的微机械装置 ,例如微型机械手、 微型工作台等。

传统机械加工方法以日本为代表 ,日本研究 MEMS的重点是超精密机械加工 ,因此他们更多的是将传统机械加工进行微型化 。

此加工方法可以分为两大类:超精密机械加工及特种微细加工。超精密机械加工以金属为加工对象,用硬度高于加工对象的工具,将对象材料进行切削加工,所得的三维结构尺寸可在0.01mm以下。此技术包括钻石刀具微切削加工、微钻孔加工、微铣削加工及微磨削与研磨加工等。

特种微细加工技术是通过加工能量的直接作用,实现小至逐个分子或原子的切削加工。特种加工是利用电能、热能、光能、声能及化学能等能量形式。常用的加工方法有:电火花加工、超声波加工、电子束加工、激光加工、离子束加工和电解加工等。超精密机械加工和特种微细加工技术的加工精度已达微米、亚微米级,可以批量制作模数仅为0.02左右的齿轮等微机械元件,以及其它加工方法无法制造的复杂微结构器件。

②、硅基MEMS技术

以美国为代表的硅基MEMS技术是利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件。这种方法可与传统的IC工艺兼容,并适合廉价批量生产,已成为目前的硅基MEMS技术主流。

当前硅基微加工技术可分为体微加工技术、表面微加工技术。

体微加工技术:

体微加工技术是对硅的衬底进行加工的技术。一般 采用各向异性化学腐蚀 ,利用单晶硅的不同晶向的腐蚀速率存在各向异性的特点而进行腐蚀,来制作不同的微机械结 构或微机械零件,其主要特点是硅的腐蚀速率和硅的晶向、搀杂浓度及外加电位有关。

另一种常用技术为电化学腐蚀 , 现已发展为电化学自停止腐蚀 ,它主要用于硅的腐 蚀以制备薄面均匀的硅膜。利用此技术可以制造出MEMS的精密三维结构。

体微加工技术主要通过 对硅的深腐蚀和硅片的整体键合来实现 ,能够将几 何尺寸控制在微米级。由于各向异性化学腐蚀可以 对大硅片进行 ,使得 MEMS 器件可以高精度地批量 生产 ,同时又消除了研磨加工所带来的残余机械应 力 ,提高了 MEMS 器件的稳定性和成品率。

表面微加工技术:

表面微加工技术是在硅片正面上形成薄膜并按一定 要求对薄膜进行加工形成微结构的技术 ,全部加工仅涉及到硅片正面的薄膜。是在20世纪80年代由美国加州大学Berkeley分校开发出来的,它以多晶硅为结构层,二氧化硅为牺牲层。表面微加工技术与集成电路技术最为相似,其主要特点是在“薄膜+淀积”的基础上,利用光刻、腐蚀等IC常用工艺制备微机械结构,最终利用选择腐蚀技术释放结构单元,获得可动的二维或三维结构。

用这种技术可以淀积二 氧化硅膜、氮化硅膜和多晶硅膜 ;用蒸发镀膜和溅射 镀膜可以制备铝、钨、钛、镍等金属膜 ;薄膜的加工一 般采用光刻技术 ,如紫外线光刻、X 射线光刻、电子 束光刻和离子束光刻。通过光刻将设计好的微机械 结构图转移到硅片上 ,再用等离子体腐蚀、反应离子 腐蚀等工艺来腐蚀多晶硅膜、氧化硅膜以及各种金 属膜 ,以形成微机械结构。

这一技术避免了体微加工所要求的双面对准、背面腐蚀等问题 ,与集成电路 的工艺兼容,且工艺成熟,可以在单个直径为几十毫米的单晶硅基片上批量生成数百个MEMS装置。

③、深层刻蚀技术

深层刻蚀技术指深层反应离子向硅芯片内部刻蚀,刻蚀到芯片内部的一个牺牲层,并在刻蚀完成后被腐蚀掉,这样本来埋在芯片内部的结构就可以自由运动。

深层刻蚀技术属于微机械加工方法 LIGA 的一种 ,LIGA 方 法是指采用同步 X 射线深层光刻、微电铸制模和注 塑复制等主要工艺步骤组成的一种综合性微机械加 工技术。

利用LIGA技术可以加工各种金属、塑料和陶瓷等材料,得到大深宽比的精细结构,其加工深度可达几百微米。

LIGA技术与其它立体微加工技术相比有以下特点:

可制作高度达数百至1000μm,深宽比可大于200,侧壁平行偏离在亚微米范围内的三维立体微结构;

对微结构的横向形状没有限制,横向尺寸可以小到0.5μm,精度可达0.1μm;

用材广泛,金属、合金、陶瓷、玻璃和聚合物都可以作为LIGA的加工对象;

与微电铸、铸塑巧妙结合可实现大批量复制生产,成本低。

LIGA的主要工艺步骤如下:在经过X光掩模制版和X光深度光刻后,进行微电铸,制造出微复制模具,并用它来进行微复制工艺和二次微电铸,再利用微铸塑技术进行微器件的大批量生产。

由于LIGA所要求的同步X射线源比较昂贵,所以在LIGA的基础上产生了准LIGA技术,它是用紫外光源代替同步X射线源,虽然不能达到LIGA加工的工艺性能,但也能满足微细加工中的许多要求。而由上海交通大学和北京大学联合开发、具有独立知识产权的DEM技术,也是LIGA技术中的一种。该技术采用感应耦合等离子体深层刻蚀工艺来代替同步辐射X光深层光刻,然后进行常规的微电铸和微复制工艺,该技术因不需要昂贵的同步辐射X光源和特制的X光掩摸板而具有广泛的应用前景。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2573

    文章

    54374

    浏览量

    786093
  • mems
    +关注

    关注

    129

    文章

    4374

    浏览量

    197711
  • 微机电系统
    +关注

    关注

    2

    文章

    144

    浏览量

    24495
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    带你一文了解聚焦离子束(FIB)加工技术

    与样品表面的相互作用,实现对材料的局部刻蚀、沉积以及改性,从而在纳米加工领域展现出重要价值。FIB技术的基本原理FIB加工技术的基础是离子束与物质之间的相互作用。该
    的头像 发表于 11-10 11:11 194次阅读
    带你一文了解聚焦离子束(FIB)<b class='flag-5'>加工技术</b>

    SEM/FIB双束系统及其截面加工技术

    扫描电子显微镜(SEM)与聚焦离子束(FIB)结合形成的双束系统,是现代微纳加工材料分析领域中一高度集成的多功能仪器平台。该系统通过在同
    的头像 发表于 10-30 21:04 151次阅读
    SEM/FIB双束<b class='flag-5'>系统</b>及其截面<b class='flag-5'>加工技术</b>

    纳米加工技术的核心:聚焦离子束及其应用

    聚焦离子束技术的崛起在纳米科技蓬勃发展的浪潮中,纳米尺度制造业正以前所未有的速度崛起,而纳米加工技术则是这一领域的心脏。聚焦离子束(FocusedIonBeam,FIB)作为纳米加工的代表性方法
    的头像 发表于 10-29 14:29 150次阅读
    纳米<b class='flag-5'>加工技术</b>的核心:聚焦离子束及其应用

    滤波器腔体精密加工技术的关键要点

    滤波器在通信系统中扮演着关键角色,其性能直接影响信号质量。而滤波器腔体作为信号传输的核心载体,其加工质量尤为重要。精密加工技术能够确保腔体尺寸精确、内壁光滑,从而保障滤波器达到最佳工作状态。 腔体
    的头像 发表于 10-15 11:08 252次阅读

    金属铬在微机电系统中的应用

    微机电系统(MEMS)领域,金属铬(Cr)因其独特的物理化学性质和工艺兼容性而被广泛应用。其物理化学性质表现为:具有较高的熔点约1907°C,良好的机械强度和硬度,杨氏模量范围在190
    的头像 发表于 08-25 11:32 1015次阅读
    金属铬在<b class='flag-5'>微机电</b><b class='flag-5'>系统</b>中的应用

    铜在微机电系统中的应用

    在 MEMS(微机电系统)中,铜(Cu)因优异的电学、热学和机械性能,成为一重要的金属材料,广泛应用于电极、互连、结构层等关键部件。
    的头像 发表于 08-12 10:53 762次阅读
    铜在<b class='flag-5'>微机电</b><b class='flag-5'>系统</b>中的应用

    安泰高压功率放大器在MEMS微机电系统中的应用研究

    MEMS(微机电系统微机电系统是一将微型机械结构与电子电路集成在同一芯片上的高科技技术,其尺
    的头像 发表于 07-04 15:02 462次阅读
    安泰高压功率放大器在MEMS<b class='flag-5'>微机电</b><b class='flag-5'>系统</b>中的应用研究

    简单认识表面微机加工技术

    相比传统体加工技术,表面微机加工通过“牺牲层腐蚀”工艺,可构建更复杂的维微结构,显著扩展设计空间。
    的头像 发表于 06-26 14:01 830次阅读
    简单认识表面<b class='flag-5'>微机</b>械<b class='flag-5'>加工技术</b>

    超短脉冲激光加工技术在半导体制造中的应用

    随着集成电路高集成度、高性能的发展,对半导体制造技术提出更高要求。超短脉冲激光加工作为一精密制造技术,正逐步成为半导体制造的重要工艺。阐述了超短脉冲激光
    的头像 发表于 05-22 10:14 1173次阅读
    超短脉冲激光<b class='flag-5'>加工技术</b>在半导体制造中的应用

    SMA接头制造工艺详解:精密加工技术与实现策略

    SMA接头制造工艺详解:精密加工技术与实现策略
    的头像 发表于 04-26 09:22 521次阅读
    SMA接头制造工艺详解:精密<b class='flag-5'>加工技术</b>与实现策略

    GaN、超级SI、SiC这三种MOS器件的用途区别

    如果想要说明白GaN、超级SI、SiC这三种MOS器件的用途区别,首先要做的是搞清楚这三种功率器件的特性,然后再根据材料特性分析具体应用。
    的头像 发表于 03-14 18:05 2187次阅读

    激光技术材料加工中的应用

    随着科技的飞速发展,激光技术以其独特的优势在材料加工领域占据了越来越重要的地位。尤其在高精度切割和焊接方面,激光技术的应用已经取得了明显的成果。本文将探讨激光
    的头像 发表于 03-12 14:22 1036次阅读

    数控车床加工工艺的技巧

    数控车床是一高精度、高效率的自动化机床,使用数控车床可以提高加工效益,创造更多的价值,数控车床的出现使企业摆脱了那落后的加工技术,数控车床加工的工艺与普通车床的
    的头像 发表于 01-22 11:46 1416次阅读
    数控车床<b class='flag-5'>加工</b>工艺的技巧

    微流控芯片中的CNC加工技术

    核心特点是将实验流程微型化,并通过微机电加工技术在芯片上构建微流路系统。 CNC加工技术的基本原理 CNC(计算机数控)加工技术是一利用计
    的头像 发表于 12-27 14:41 990次阅读

    安泰超声功率放大器在MEMS微机电系统中的应用

    MEMS即微机电系统(Micro Electromechanical System),是一在微米级别设计的微型机械系统,包括微传感器、微执行器、信号处理和控制电路等组成部分。MEMS
    的头像 发表于 12-17 10:36 671次阅读
    安泰超声功率放大器在MEMS<b class='flag-5'>微机电</b><b class='flag-5'>系统</b>中的应用