0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PyTorch版《动手学深度学习》开源了

倩倩 来源:lq 作者:机器之心 2019-09-20 15:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

想要入门最前沿的深度学习,想要玩最常见的深度学习框架?那就用 PyTorch 版的《动手学深度学习》吧,零基础也能入门 DL。

李沐等人的开源中文书《动手学深度学习》现在有 PyTorch 版实现了。不论是原书中的示例代码,还是实战项目,原来的 MXNet 都可以无缝转化到 PyTorch 代码。项目作者在保持原书内容基本不变的情况下,将 MXNet 代码都转换为了 PyTorch,想要学习 DL 和 PyTorch 的小伙伴们可以试试啊。

项目地址:https://github.com/ShusenTang/Dive-into-DL-PyTorch

近年来,不论是计算机专业的学生,还是已在科技互联网行业从业多年的技术人员和其他从业者,人们对深度学习的兴趣从未如此高涨。但是,由于语言等因素,中文版本的优秀深度学习教材也是凤毛麟角。

之前,亚马逊首席科学家李沐等人曾以电子版的形式在 GitHub 上开源了一本深度学习中文书籍——《动手学深度学习》,这是一本深度学习的入门教程类书籍。其英文版被 UC 伯克利「深度学习导论(STAT 157)」课程采用,2019 年李沐等在教授深度学习课程时也使用了这本教程。

中文版开源地址:https://github.com/d2l-ai/d2l-zh

目前,该项目在 GitHub 上已获得超过 1.1 万星,并且中文版电子书还发布了纸质版书籍。不过虽然书籍非常优秀,但还是有一些读者不太习惯用 Gluon 来写代码,毕竟开源项目大部分都是 TF 或 PyTorch 写的。现在好了,我们可以直接结合书籍内容和 PyTorch 框架,更深入地理解 DL。

项目怎么样

项目作者表示,该仓库主要包含 code 和 docs 两个文件夹。其中 code 文件夹就是每章相关 jupyter notebook 代码(基于 PyTorch);docs 文件夹就是 markdown 格式的《动手学深度学习》书中的相关内容,它也是基于 PyTorch 的。

由于原书内容使用的是 MXNet 框架,所以 docs 内容可能与原书略有不同,但是整体内容是一样的。如下所示为 docs 目录下的文档,它一共包含十章,大部分内容已经非常完整了,即 1-8 章和第 10 章,只有第 9 章计算机视觉还在继续补全中。

其实新项目的内容结构与组织方式和原书是一样的,上面展示的 docs 目录主要可以分为三部分:基础知识(1-3 章)、现代深度学习技术(4-6 章)、计算性能与应用(7-10)。如下所示为全书不同章节的主题与依赖关系,箭头表示上一章有助于理解下一章。

除了内容,另一大部分就是实战代码了,随书代码基本都转化为了 PyTorch,它如同原书一样也是用 Jupyter Notebook 写的,这样更好地展示代码与文字解释。因为 GitHub 加载 Jupyter Notebook 挺慢的,所以最好还是下到本地查阅。

最后,《动手学深度学习》与 PyTorch 也是非常好的搭档,也就是说我们不需要任何机器学习或深度学习背景知识,只需要了解基本数学与 Python 编程就可以了。

从 MXNet 到 PyTorch

这样看起来可能不太直观,我们可以通过两个案例看看原版《动手学深度学习》随书代码和 PyTorch 版之间的区别。如果我们抽取使用循环神经网络构建语言模型的分布代码,就能看看原版 Gluon 和新版 PyTorch 之间的区别。

如下是原书采用 RNN 建模语言模型的部分代码(原书 6.5 章),我们主要抽取了模型定义部分:

如上可以改写为对应的 PyTorch 代码,它们的风格虽然都非常简洁,但还是有一些不同的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 代码
    +关注

    关注

    30

    文章

    4941

    浏览量

    73140
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123900
  • pytorch
    +关注

    关注

    2

    文章

    813

    浏览量

    14697
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    开源鸿蒙领课堂——山东·泰安站圆满举办

    生态建设。山东科技大学以"开源技术赋能教学实践与人才培养"为主题,共同围绕开源鸿蒙系统生态、应用开发实践、教学资源共建及产合作协同育人等议题展开深度交流,旨在搭建技术
    的头像 发表于 12-05 19:13 2294次阅读
    <b class='flag-5'>开源</b>鸿蒙领<b class='flag-5'>学</b>课堂——山东·泰安站圆满举办

    开源鸿蒙领课堂——新疆·乌鲁木齐站圆满举办

    2025年11月25日下午,开源鸿蒙领课堂(以下简称“领课堂”)——新疆乌鲁木齐站于新疆大学博达校区圆满举办。本次领课堂以聚焦操作系统及软件领域前沿,通过技术理论与实践经验分享,
    的头像 发表于 11-29 11:43 95次阅读
    <b class='flag-5'>开源</b>鸿蒙领<b class='flag-5'>学</b>课堂——新疆·乌鲁木齐站圆满举办

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于学习的外观质量标准判定 精密
    的头像 发表于 11-27 10:19 49次阅读

    NVIDIA推出面向语言、机器人和生物的全新开源AI技术

    NVIDIA 秉持对开源的长期承诺,推出了面向语言、机器人和生物的全新开源 AI 技术,为构建开源生态系统做出贡献,扩展 AI 的普及并推动创新。NVIDIA 正将这些模型、数据和训
    的头像 发表于 11-06 11:49 688次阅读

    如何在机器视觉中部署深度学习神经网络

    人士而言往往难以理解,人们也常常误以为需要扎实的编程技能才能真正掌握并合理使用这项技术。事实上,这种印象忽视该技术为机器视觉(乃至生产自动化)带来的潜力,因为深度学习并非只属于计算机科学家或程序员。 从头开始:什么
    的头像 发表于 09-10 17:38 692次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经网络

    深度学习对工业物联网有哪些帮助

    深度学习作为人工智能的核心分支,通过模拟人脑神经网络的层级结构,能够自动从海量工业数据中提取复杂特征,为工业物联网(IIoT)提供从数据感知到智能决策的全链路升级能力。以下从技术赋能、场景突破
    的头像 发表于 08-20 14:56 757次阅读

    挖到宝!人工智能综合实验箱,高校新工科的宝藏神器

    深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源学习底层算法
    发表于 08-07 14:30

    挖到宝!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源学习底层算法
    发表于 08-07 14:23

    开源电机驱动,免费直播学习!

    开源电机驱动,免费直播学习!
    的头像 发表于 06-13 10:07 1283次阅读
    <b class='flag-5'>开源</b>电机驱动,免费直播<b class='flag-5'>学习</b>!

    如何排除深度学习工作台上量化OpenVINO™的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO™特定层
    发表于 03-06 07:31

    灵汐科技开源类脑深度学习应用开发平台BIDL

    富案例等问题,一直制约着其广泛应用。为了突破这一瓶颈,灵汐科技联合脑启社区正式宣布开源类脑深度学习应用开发平台BIDL(Brain-inspired Deep Learning)。
    的头像 发表于 03-05 09:13 1481次阅读
    灵汐科技<b class='flag-5'>开源</b>类脑<b class='flag-5'>深度</b><b class='flag-5'>学习</b>应用开发平台BIDL

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变
    的头像 发表于 02-14 11:15 818次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1340次阅读

    传统机器学习方法和应用指导

    用于开发生物数据的机器学习方法。尽管深度学习(一般指神经网络算法)是一个强大的工具,目前也非常流行,但它的应用领域仍然有限。与深度
    的头像 发表于 12-30 09:16 1980次阅读
    传统机器<b class='flag-5'>学习</b>方法和应用指导

    利用Arm Kleidi技术实现PyTorch优化

    PyTorch 是一个广泛应用的开源机器学习 (ML) 库。近年来,Arm 与合作伙伴通力协作,持续改进 PyTorch 的推理性能。本文将详细介绍如何利用 Arm Kleidi 技术
    的头像 发表于 12-23 09:19 1618次阅读
    利用Arm Kleidi技术实现<b class='flag-5'>PyTorch</b>优化