0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科学家发现在硅片上创造单个分子电气触点的新方法

半导体动态 来源:wv 作者:全球半导体观察 2019-10-05 16:58 次阅读

近日,据外媒消息,位于Rüschlikon的苏黎世IBM研究所、巴塞尔大学联手苏黎世大学的研究人员在《自然》杂志上发表了一种在硅片上创造单个分子电气触点的新方法。这一项进展将为开发传感器以及操纵单个分子的电子或光子应用开辟了一条新道路。

图片来源:IBM Research-Zurich

回溯20世纪70年代中期,研究人员发现了一种具有有趣电子特性的单分子,如二极管,人们当时对其寄予厚望,认为这将促进半导体技术的发展,这种技术可能会与硅基电子产品竞争。

然而,为这种单分子建立电气触点只能在实验室里展开。虽然可以通过扫描隧道显微镜(STMs)的技巧与这些分子进行接触,但这实验必须在真空与低温条件下进行。另外,由于它们在其所承认的分子电流中差别很大,因此单一的电路难以复制。这些限制因素就是迄今为止分子电子设备仍未诞生的主要原因。

来自IBM研究所的《自然》杂志论文合著者Lortscher表示,“我们需要制造常温稳定的设备,,并且能够放置在强大平台上的,比如数十亿数量的硅片能够与CMOS技术竞争一样。”

为了实现这一目标,研究人员首先尝试了一种用硅做成“三明治”的方法,可惜并不奏效。他们在一颗硅晶片上制造了铂电极,并用一层薄薄的非导电材料覆盖在上面。接着再使用传统的蚀刻技术在这一层打造了纳米孔。然后再使用烷基二硫醇分子溶液填充纳米孔的孔隙,使溶液中的分子在孔隙中形成一个自组装单层膜,单层密集的平行分子。

研究人员试图用另一薄铂层覆盖这些纳米孔以形成上层接触。但是,在这种方法下,分子和接触层之间的距离变化所引起的接触电阻差异很大。由此产生的设备无法投入使用。之后他们也尝试使用石墨烯,但结果不如所愿。

庆幸的是,研究人员最终找到了一个简单的解决方案。他们的解决方案是:在毛孔中填充自组装单层膜(SAM)材料后,用金纳米粒子覆盖毛孔中的自组装单层膜。因为这些纳米粒子足够大,不会落在自组装分子之间,与分子接触时不会破坏分子或改变其性质。“纳米粒子会自动调整到分子的大小,“巴塞尔大学的马塞尔校长如是说道,”现在看起来很简单,我们为了达到这个目标做了很多工作。”

据《自然》杂志的报告介绍,研究人员在晶圆上创造了大约3000个纳米孔,每一个都有自组装的分子。他们在测试分子对应用电压的反应时发现,对于同样大小的毛孔,其反应的扩散是非常小的。尽管由于缺陷,孔隙中个体分子的接触电阻可能不同,但是通过这种自组装单层膜(SAM)方法,他们能获取一个有效的平均样本。

参与这项研究的巴塞尔大学马塞尔校长表示,不确定SAM分子设备是否能够与硅设备竞争数据存储或交换。他说道,由于自组装分子的电性能受到其他分子的影响,所以它们可以用于感知应用,例如,SAM分子具有pH敏感性,当它们暴露在某些蒸汽或溶剂中时,它们会重新排列结构或引起膨胀。“这就是产业界对这些设备感兴趣之处,他们对更精确的分析设备的应用翘首以盼。”来自斯坦福大学的材料科学家Zhenan Bao对此表示赞同,“单个分子间的稳定接触一直是一个重大挑战。令人印象深刻的是,它们得到了可重复的结果,电传导随分子的长度而伸缩。这种方法对将来制造分子记忆和电路或许非常有效。”

然而,这项研究方法也受到了专业人士的质疑,韩国庆北大学研究员金永京(Youngkyoo Kim)对于将SAM装置作为传感器持保留态度,他表示,“我觉得目前的纳米粒子和自组装方法在大规模制造分子装置的电气触点方面听起来不错,但是性能重现性和稳定性仍然是一个需要克服的大难题。就目前的装置结构而言,金属电极(包括金属纳米粒子)和SAM层都需要很好地封装,才能保证稳定的运行。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    328

    文章

    24509

    浏览量

    202154
收藏 人收藏

    评论

    相关推荐

    使隐形可见:新方法可在室温下探测中红外光

    卡文迪什实验室进行,标志着科学家在洞察化学和生物分子工作方面取得了重大突破。 在使用量子系统的新方法中,研究小组利用分子发射器将低能量MIR光子转换为高能量可见光子。这项新创新能够帮助
    的头像 发表于 04-19 06:31 55次阅读
    使隐形可见:<b class='flag-5'>新方法</b>可在室温下探测中红外光

    轧机牌坊滑板压亏修复的新方法

    电子发烧友网站提供《轧机牌坊滑板压亏修复的新方法.docx》资料免费下载
    发表于 03-14 16:16 0次下载

    氢压机轴承位磨损维修的新方法

    电子发烧友网站提供《氢压机轴承位磨损维修的新方法.docx》资料免费下载
    发表于 03-01 16:23 0次下载

    新方法可保持光束质量又能显著提高光纤激光器的功率

    光学科学家发现了一种新方法,可以在保持光束质量的同时显著提高光纤激光器的功率,使其成为未来对抗低成本无人机和用于遥感等其他应用的关键防御技术。 南澳大利亚大学(UniSA)、阿德莱德大学(UoA
    的头像 发表于 12-20 06:31 210次阅读
    <b class='flag-5'>新方法</b>可保持光束质量又能显著提高光纤激光器的功率

    一种产生激光脉冲新方法

    等离子体中脉冲压缩的概念 英国和韩国的科学家提出了一种产生激光脉冲的新方法,其功率是现有激光脉冲的1000多倍。 科学家们使用计算机模拟联合研究,展示了一种压缩光的新方法,以充分提高光
    的头像 发表于 12-07 06:32 230次阅读
    一种产生激光脉冲<b class='flag-5'>新方法</b>

    IC封装中快速创建结构的新方法

    IC封装中快速创建结构的新方法
    的头像 发表于 12-06 16:34 236次阅读
    IC封装中快速创建结构的<b class='flag-5'>新方法</b>

    基于PMSM 控制系统仿真建模的新方法

    电子发烧友网站提供《基于PMSM 控制系统仿真建模的新方法.pdf》资料免费下载
    发表于 11-29 11:22 0次下载
    基于PMSM 控制系统仿真建模的<b class='flag-5'>新方法</b>

    一种产生激光脉冲的新方法

    英国和韩国的科学家提出了一种产生激光脉冲的新方法,其功率是现有激光脉冲的1000多倍。
    的头像 发表于 11-20 16:56 259次阅读
    一种产生激光脉冲的<b class='flag-5'>新方法</b>

    VLSI系统设计的最新方法

    电子发烧友网站提供《VLSI系统设计的最新方法.pdf》资料免费下载
    发表于 11-20 11:10 0次下载
    VLSI系统设计的最<b class='flag-5'>新方法</b>

    研究人员开发出定制薄膜的新方法

    朗缪尔层沉积工艺示意图。 德国耶拿莱布尼茨光子技术研究所(Leibniz IPHT)领导的一个德美科学家团队开发出一种新方法,可自动沉积具有明确特性的有机半导体薄膜。 这一方法发表在《先进材料》(Advanced Materia
    的头像 发表于 11-17 16:09 209次阅读
    研究人员开发出定制薄膜的<b class='flag-5'>新方法</b>

    MIR振动辅助发光可实现一立方纳米以下的极端光束限制体积

    科学家在洞察化学和生物分子工作方面取得了重大突破。    MIR振动辅助发光(MIRVAL) 在使用量子系统的新方法中,研究小组利用分子发射器将低能量MIR光子转换为高能量可见光子。这
    的头像 发表于 08-29 11:24 750次阅读

    华为辟谣3.2万名科学家移籍

    华为辟谣3.2万名科学家移籍 对于近期网络传言的华为3.2万名科学家移籍华为方面表示,造谣者毫无根据、无中生有。 华为辟谣3.2万名科学家移籍以及其他的一些网络传言,比如“华为孟晚舟宣布23万亿
    的头像 发表于 08-22 16:51 1003次阅读
    华为辟谣3.2万名<b class='flag-5'>科学家</b>移籍

    USBブート用ドライバ誤認識後のドライバ更新方法

    USBブート用ドライバ誤認識後のドライバ更新方法
    发表于 07-11 20:20 0次下载
    USBブート用ドライバ誤認識後のドライバ更<b class='flag-5'>新方法</b>

    踏歌智行创始人、首席科学家余贵珍教授登榜“2023科创家”

    ,余教授便是其中一员。 踏歌智行创始人、首席科学家余贵珍教授登榜“2023科创家” “2023科创家”榜单历时两个月,在科研部分围绕 基础创新方向、学术级别、深造高校、论文、专利 等评价指标,在创业部分围绕 公司商业模式、员工情况、财务情
    的头像 发表于 06-16 19:15 2366次阅读
    踏歌智行创始人、首席<b class='flag-5'>科学家</b>余贵珍教授登榜“2023科创家”

    USBブート用ドライバ誤認識後のドライバ更新方法

    USBブート用ドライバ誤認識後のドライバ更新方法
    发表于 05-15 19:09 0次下载
    USBブート用ドライバ誤認識後のドライバ更<b class='flag-5'>新方法</b>