电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>人工智能>2017年这18大科技趋势不可不知

2017年这18大科技趋势不可不知

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

工程师不可不知的开关电源关键设计(四)

牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,由于广大工程师网友对前两期的热烈反响,电子发烧友再接再厉推出《工程师不可不知的开关电源关键设计
2012-02-28 11:16:0412765

工程师不可不知的开关电源关键设计(五)

牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,由于广大工程师网友对前四期的热烈反响,电子发烧友网再接再厉推出《工程师不可不知的开关电源关键设
2012-03-09 10:47:335972

半导体芯片产业这三大趋势不可不知

TPU对英特尔和英伟达这些芯片制造商构成了威胁,因为这个芯片是由Google自己制造的。但GPU对Google以及其他类似公司也有巨大的作用,而英伟达是这些专门芯片的主要制造商。
2016-11-07 13:59:35857

2017年这十家机器人公司不可不知

对比去年的 Top 10 榜单,今年榜单中有不少“新”面孔(机器之心已经添加备注),包括一些“大牌”公司,比如波士顿动力、IBM Watson、英特尔、博世、英伟达等。仅代表 RBR 观点。
2017-03-27 08:10:515556

区块链技术应用,七大领域不可不知

区块链是一种广泛应用于新兴数字加密货币的去中心化基础架构,随着比特币的逐渐被接受而受到关注和研究,其本质上是一个去中心化的分布式账本数据库。区块链技术具有去中心化、区块数据基本不可篡改、去信
2018-01-24 10:24:1122807

全球未来十年不可不知的10大趋势

全球未来十大趋势:第一、互联和融合,包含互联网设备,5G网络和实时服务;第二、实体和电商;第三、城市将会成为商业非常重要的客户。第四、社会发展趋势;第五、新商业模式:为更多人提供价值等等。
2018-06-25 10:42:528232

工程师不可不知的开关电源关键设计(六)

  电子发烧友网讯:牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,由于广大工程师网友对前四期的热烈反响,电子发烧友网再接再厉推出《工程师不可
2012-06-13 17:13:4616301

“剁手节”不可不知的物联网技术

从双11天猫如此大的交易额不难发现,一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分。未来主要是市场、系统机制模式、系统结构等领域,从而使得数据生态系统复合化程度逐渐增强。
2015-11-12 09:15:361159

关于机器人简史,这些你不可不知

据Techworld报道,机器人的历史可追溯到古希腊时代,哲学家亚里士多德(Aristotle)曾谈及自动化工具。而机器人的现代起源则是亨利·福特(Henry Ford)发明的Model T装配线。
2016-09-02 09:32:162242

IoT时代不可不知的安防七大要点

从全球性角度来看,整个世界将经历动荡变化,包含冲突、政治不确定性、持续的难民危机,以及最近经济衰退以来略显脆弱的经济复苏。
2017-04-24 09:18:42918

24VDC-220VDC车载开关电源和开关电源保护电路设计方案

工程师不可不知的开关电源关键设计(六)(7)
2019-03-15 12:05:48

2017A题

2017A题,三项逆变如何实现呀?求大神指点指点
2017-08-09 11:49:55

2017企业级SaaS服务发展趋势

具备何种中国特色的SaaS软件系统才是大势所趋?怡海软件综合各种主流观点总结出以下几点趋势: 1、定制化、个性化解决方案是趋势 2017SaaS应用将呈现出更强烈的行业定制化特征,主要原因
2017-07-17 10:22:19

不可不知的ARM技术学习诀窍

不可不知的ARM技术学习诀窍
2012-08-20 23:52:13

不可不知的DSP芯片特点与分类

  根据数字信号处理的要求,DSP芯片一般具有如下的一些主要特点:  (1) 在一个指令周期内可完成一次乘法和一次加法。  (2) 程序和数据空间分开,可以同时访问指令和数据。  (3) 片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问。  (4) 具有低开销或无开销循环及跳转的硬件支持。  (5) 快速的中断处理和硬件I/O支持。  (6) 具有在单周期内操作的多个硬件地址产生器。  (7) 可以并行执行多个操作。  (8) 支持流水线操作,使取指、译码和执行等操作可以重叠执行。与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。  DSP芯片可以按照下列三种方式进行分类  1.按基础特性分  这是根据DSP芯片的工作时钟和指令类型来分类的。如果在某时钟频率范围内的任何时钟频率上,DSP芯片都能正常工作,除计算速度有变化外,没有性能的下降,这类DSP芯片一般称为静态DSP芯片。例如,日本OKI 电气公司的DSP芯片、TI公司的TMS320C2XX系列芯片属于这一类。  如果有两种或两种以上的DSP芯片,它们的指令集和相应的机器代码机管脚结构相互兼容,则这类DSP芯片称为一致性DSP芯片。例如,美国TI公司的TMS320C54X就属于这一类。  2.按数据格式分  这是根据DSP芯片工作的数据格式来分类的。数据以定点格式工作的DSP芯片称为定点DSP芯片,如TI公司的TMS320C1X/C2X、TMS320C2XX/C5X、TMS320C54X/C62XX系列,AD公司的ADSP21XX系列,AT&T公司的DSP16/16A,Motolora公司的MC56000等。以浮点格式工作的称为浮点DSP芯片,如TI公司的TMS320C3X/C4X/C8X,AD公司的ADSP21XXX系列,AT&T公司的DSP32/32C,Motolora公司的MC96002等。  不同浮点DSP芯片所采用的浮点格式不完全一样,有的DSP芯片采用自定义的浮点格式,如TMS320C3X,而有的DSP芯片则采用IEEE的标准浮点格式,如Motorola公司的MC96002、FUJITSU公司的MB86232和ZORAN公司的ZR35325等。  3.按用途分  按照DSP的用途来分,可分为通用型DSP芯片和专用型DSP芯片。通用型DSP芯片适合普通的DSP应用,如TI公司的一系列DSP芯片属于通用型DSP芯片。专用DSP芯片是为特定的DSP运算而设计的,更适合特殊的运算,如数字滤波、卷积和FFT,如Motorola公司的DSP56200,Zoran公司的ZR34881,Inmos公司的IMSA100等就属于专用型DSP芯片。
2016-12-15 19:27:05

不可不知的PCB布局陷阱

Circuits”中的IPC-D-317A4提供了一个行业标准方程,用于估算微带线PCB的各种阻抗参数。该文件在2003被IPC-2251取代 5,后者为各种PCB引线提供更准确的计算方法。可以通过
2017-01-18 15:30:20

不可不知的伺服电机问题

对其内部功能参数进行人工设定而实现位置控制、速度控制、转矩控制等多种功能。那么关于伺服电机有哪些需要知道的呢?下面小编总结了伺服电机的21个你可能不知道问题,一起来看一下吧。1.如何正确选择伺服电机
2015-12-27 10:10:58

不可不知的嵌入式工程师经验

烧到嵌入式系统硬件平台中的ROM中就实现了一个真正的“嵌入”。以上的定义是我在6、7前给嵌入式系统下自话侧重于理解型的定义,书上的定义也有很多,但在这个领域范围内,谁都不敢说自己的定义是十分确切
2012-09-22 15:25:33

不可不知的嵌入式工程师经验(总结篇)

不可不知的嵌入式工程师经验(总结篇)
2012-08-20 10:52:28

不可不知的整流电路

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和 图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的.更多整流电路知识请进:https://bbs.elecfans.com/jishu_293569_1_1.html
2011-10-18 11:26:18

不可不知的测量精度五大迷思

。   迷思一:分辨率=测量精度吗  市面上12位分辨率的数据采集卡的精度都是一样的吗?这个问题困扰了不知多少工程师,而其实质就是分辨率与精度的概念区别。   分辨率通常指的是最大的信号经采样后可以被分成的最小
2011-10-27 09:38:05

AC-DC电源设计不可不知的要点

的系统,强制空气冷却也许不可行,意味着必须采用成本高昂的大表面积薄型散热器来实现散热管理。  AC/DC电源就是输入为交流,输出为直流的电源模块。其中在这模块内部包含有整流滤波电路,降压电路和稳压
2019-03-08 06:00:00

Matlab中你不可不知的基础知识

1.创建特殊矩阵命令格式diag(a,k)输出矩阵a主对角线右移k列时其元素构成的列向量;k=0时可以省略。magic(n)输出n阶魔方阵(各行各列及主对角线元素和均为(n3+n/2))tril(a) (trilu(a)) 输出矩阵a的主对角线下方(上方)元素构成的下(上)三角矩阵2.变换矩阵结构的常用命令flipud(a)输出矩阵A上下翻转后的矩阵fliplr(a)输出矩阵a左右翻转后的矩阵rot90(A,k)输出矩阵A沿逆时针旋转k个90度后的矩阵,k为正负整数rot(A)2.数值矩阵的维数查询size(a)或size(a,r)r可取1或2。当r=1时输出a的行数,当a=2时输出矩阵a的列数。求矩阵共轭的转置的命令若A为实数矩阵,则用“ ' ”若A为复数矩阵,用conj(A`)或conj(A)` 表示3.矩阵的基本运算两个矩阵相乘时,他们的维数必须相等,即左矩阵的列数,必须等于右矩阵的行数,可用a*b,或者mtimes(a,b)表示进行方阵的a的n次幂运算时a^n,mpower(a,n)4.数组算法length(a)输入变量a为向量时,则输出向量的维数,若为m*n阶矩阵时,则输出行数和列数中的最大值。5.向量的点积和叉积 5.1 点积(数量积)dot(a,b)5.2 叉积(向量积)c=cross(a,b)6.矩阵的逆运算 6.1 inv(A) A必须为方阵且方阵A的行列式不为0 6.2 pinv(A)(伪逆矩阵)A为长矩阵7.矩阵的秩rank(a)由于正在学习阶段,难免有错误,望大家不吝赐教。{:4_95:}
2014-07-14 22:49:49

NI 采集卡可不可以变频率输出脉冲信号?

请问坛里各位大佬,NI采集卡可不可以输出频率连续变化的脉冲信号呀?,我变想用有个NI采集卡,想用它来仿真频率连续变化的脉冲信号用于输出,可不知道怎么弄
2020-04-10 14:59:31

《FPGA三国论战》FPGA全解析—不可不看的故事【长篇巨著】

`《FPGA三国论战》FPGA全解析—不可不看的故事【长篇巨著】 3万字长篇作品 电子发烧友网独家整理倾情奉献不可不看的故事在这个论坛里,看到多数朋友在讨论技术问题。但是关乎产品结构的帖子相对来说
2012-03-20 16:27:03

【亚派·趋势2017-2023电能质量设备市场将增5.5%

根据市场研究机构Market Research Future的报告,2017-2023,全球电能质量设备市场将以复合增率5.5%增长。电能质量设备是用于电力监测及提供统一电能质量的设备,有助于
2018-01-09 15:06:26

【设计技巧】不可不知的运算放大器设计细节

运放的内部其实是一个多级的放大器,因此,不可避免的对系统引入了极点使得电路需要进行相位补偿。通常采用超前补偿、滞后补偿和滞后-超前补偿。 所谓的超前补偿就是相移减小的补偿,通俗的讲就是使电路出现零点
2019-07-18 08:30:00

买笔记本电脑不可不知道的10个热点问题

买笔记本电脑不可不知道的10个热点问题
2012-08-10 10:49:57

不可不知的嵌入式内核

2440mini2440_defconfig - Build for mini2440b.备份配置好的文件,把.config文件保存为config_back[步的前提是你配置好过内核] [root@dhua
2013-12-10 10:01:22

关于DSP的几十个常见疑问与解答

对于DSP入门学习者。不可不知的常见问题,此处有解答。
2016-07-01 16:27:38

写好LabVIEW程序不可不知的利器——汇总篇

1、写好LabVIEW程序不可不知的利器(一):模块化功能 VI2、写好LabVIEW程序不可不知的利器(二):State Machine3、写好LabVIEW程序不可不知的利器(三):进阶应用4、写好LabVIEW程序不可不知的利器(四):Event Producer/Consumer
2014-11-20 15:38:19

写好LabVIEW程序不可不知的利器(三):进阶应用

前两篇主要想传达一个写 LabVIEW 程序的概念,也就是要将常用到的功能包成Sub VI 。写程序不再只是将所有程序码写进一个 Loop 里面,而是开始写程序前会先规画好需要哪些程序功能,以及适合运用哪种 Design Pattern 的架构。今天要谈的是更进阶的方法,不仅将程序模块化,连程序功能也一起加进去。 除了 Data Flow 的概念,在 LabVIEW 里面另外一个很重要的概念就是 Shift Register 。一般初学者在学到 Shift Register 的时候,只知道 Shift Register 可以用来传递资料到下一次循环,以及程序执行一开始要先对 Shift Register 初始化,否则 Shift Register 内部会保留上一次程序执行结束的资料。但其实 Shift Register 只是 LabVIEW 帮我们预先规画好的存储器区块,我们可以随时随地去初始化、写入或读取里面的资料,进阶的用法就是 Functional Global Variable 。将上图的程序架构包成 Sub VI 就是一个可随时随地被呼叫使用的 Functional Global Variable ,其有以下特点:(1) 只执行一次的 Loop 。(2) 未初始化的 Shift Register 。(3) Enum Control 和 Case Structure 。 (4) 禁止 Reentrant execution 。看起来 Functional Global Variable 和一般常用的 Local Variable 或 Global Variable 的功能很像。但不同的是 Functional Global Variable 本身就是一个 Sub VI ,所以在 VI Properties 中的 Execution 可以去设定是否允许 Reentrant execution ,而预设值是取消的,如下图。在禁止 Reentrant execution 的状态下, Sub VI 可以随时随地使用,但如果同时有两个人在呼叫它的时候,并不会同时写入资料,而是会排队等先呼叫的人执行完,另一个人才能进去使用它。如此可避免同时去读写资料而造成 Race Condition ,甚至可以在程序里面增加功能去纪录资料是在何时何地被读写的。接下来同样沿用前两篇的红绿灯程序来做为范例,在开始写程序之前,先规划一下会需要用到那些功能模块。首先是要有一个可以写入红绿灯状态并且可以读取显示的模块,另外就是要有一个计时功能的模块,设定好时间后,会等到时间到了再执行下一个动作。下面我会将这两个模块先写成 Functional Global Variable ,如下图。上图是 Timing Module 的程序,在 Reset 的状态中,会将输入的 Wait Time (s) 以及将目前时间当作 Start Time 写入 Shift Register 中。在 Check 的状态中,每次会等待 50ms ,并将目前的时间减掉 Start Time 计算经过时间,再与一开始设定的 Wait Time 相比较,输出为是否到达时间 Done ?上图是 Traffic Light Module 的程序,其中 Shift Register 内存放的是红绿灯的状态, State Control 指定执行的方法,最后会输出下一次要执行的状态 Next State ,以及目前状态要等待的时间 Wait Time (s) 。当执行 Read 状态时,会将 Shift Register 中的资料读取出来并输出。 上图是红绿灯执行的流程,一开始会先初始化红绿灯,接下来亮红灯并停留 2 秒,接着亮黄灯并停留 1 秒,最后亮绿灯并停留 3 秒。看到这边大家应该会有似曾相识的感觉,没错这是 State Machine 的写法,但是又会困惑为何循环每次只执行一次。因为接下来要示范的是 State Machine 的另外一种写法- Queued State Machine 。主程序如上图所示,是由 Queue 所架构而成的,其所传递的 element 为主程序执行的状态 Queue State 以及 Traffic Light State 所包成的 Cluster 。而在程序一开始就预先 Enqueue element 进去一笔 Write 的指令,将 Traffic Light Module 状态设定为 Start 。当程序执行 Write 指令时,会将 TL State 写入前面所写好的 Traffic Light Module ,并且将 Wait Time 设定于 Timing Module 。再将 Read 的指令以及 Write 设定红绿灯的 Next State 的指令先后排入 Queue 里面。接下来执行 Read 指令时,会读取目前红绿灯的状态并且更新界面上的 Indicator 。此时在 Queue 里面还有一笔 Write 的指令,是要将红绿灯的 Next State 写入。但我们必须等 Wait Time 到达时才能执行,所以就要使用 Enqueue Element At Opposite End 将 Wait 的指令插队排到 Write 之前来执行。而在 Wait 的状态中,会去 Check 时间是否到达 Wait Time 了?如上图,如果时间还没到,同样将一笔 Wait 的指令插队排入 Queue 里面。当时间到达时,才不将 Wait 的指令排入,此时先前排入 Queue 里面 Write 指令就会在下一次循环执行。整个程序的流程就会是 Write (更新红绿灯) -> Read (读取红绿灯) -> Wait until time done -> Write …… 循环。而在这次的程序中所写的两个 Functional Global Variable 除了可以储存资料外,它还可以将一些程序的功能或方法写进去,程序写起来较为弹性,像这次就把 State Machine 给一并写了进去。转载
2014-11-20 15:11:01

参与开源共建,你不可不知的贡献技巧

参与开源共建,你不可不知的贡献技巧近期,在“战码先锋,PR征集令”活动中,上百位开发者们热情踊跃地参与了活动,以提PR的方式为OpenHarmony项目贡献自己的力量。但对于开源新手来说,刚开始接触
2022-08-23 15:27:32

学电机不可不知道的44个常识

本帖最后由 Nancyfans 于 2019-10-22 18:07 编辑 学电机不可不知道的44个常识1 .单相变压器空载时的电流与主磁通不同相位,存在一个相位角度差aFe,因为存在铁耗电
2016-01-22 10:16:42

开关电源EMI设计经验和半桥式开关电源变压器参数计算方法

工程师不可不知的开关电源关键设计(二)(4)
2019-03-26 10:50:03

开关电源浪涌电流抑制模块的应用和并联均流实现

工程师不可不知的开关电源关键设计(三)(4)
2019-03-29 06:56:42

开关电源的稳定性设计和EMC技术分析

工程师不可不知的开关电源关键设计(五)(4)
2019-03-27 10:09:30

开关电源设计EMI问题的解决

工程师不可不知的开关电源关键设计(四)(4)
2019-03-27 11:30:16

开关电源设计整合系列

工程师不可不知的开关电源关键设计(一)(4)
2019-04-02 09:19:33

想玩转FPGA,这几个点不可不知

如何?工程师都知道FPGA由六部分组成:可编程输入/输出单元、基本可编程逻辑单元、嵌入式块RAM、丰富的布线资源、底层嵌入功能单元和内嵌专用硬核。自Xilinx在1984创造出FPGA以来,这种
2017-12-29 16:45:29

求助!我想使用频谱分析仪器分析超声波频谱不知可不可行?

求助!我想使用频谱分析仪器分析超声波频谱不知可不可行?跪求大神给一套方案。 频谱分析仪(频谱范围是0hz-100mhz) 超声波探头中心频率1mhz 我想分析超声波20khz-3mhz的频谱不知可不可行? 超声波探头可以更换
2023-10-04 08:26:09

电子技术大神和菜鸟都不可不知的惊天秘密

无论您是刚入门的电子技术爱好者,还是炉火纯青的电子技术大神,这本惊天秘籍,对您绝对有帮助!电子技术大神和菜鸟都不可不知的惊天秘密云盘地址: https://pan.baidu.com/s/1caWpqe
2017-07-13 08:50:22

西门子服务器提升抱闸信号不输出,西门子V90伺服调试工程师不可不知的一些事儿 精选资料分享

原标题:西门子V90伺服调试工程师不可不知的一些事儿西门子V90伺服驱动系统作为SINAMICS驱动系列家族的新成员,与SIMOTICS S-1FL6 完美结合,组成最佳的伺服驱动系统,实现位置控制
2021-09-06 09:18:41

这样做个移动电源可不可以?

本人现在校读高一,移动电源不幸被偷了,就想diy一个电源。方案为摩托车电瓶(12V那种)+降压模块,不知可不可行?可行的话谁能帮做个降压模块?小白在此虚心向请高手请教
2013-04-23 16:37:26

(转)学习无刷电机,不可不知道的44个常识!

推荐课程:张飞软硬开源:基于STM32的BLDC直流无刷电机驱动器(视频+硬件)http://url.elecfans.com/u/73ad899cfd 学习无刷电机,不可不知道的44个常识!1
2019-07-02 10:51:43

不可不知关于手机电池的一些常识!

不可不知关于手机电池的一些常识! 关于手机电池寿命! 这是我新买手机的时候在网上搜刮到的资料,我觉得最好还是看看说明书,说明书里
2009-10-24 14:42:41510

七则不可不知的电池常识

七则不可不知的电池常识         一、电池有保质期吗?  电池是通过其内部的正负极发生化学反应,
2009-11-14 10:40:37645

充电电池不可不知的基本常识

充电电池不可不知的基本常识        一.电压:两极间的电位差称为电池的电压。主要有标称(额定)电压、开路电压、充电终止(截止)
2009-11-14 10:45:483465

手机使用常识及手机电池不可不知的小常识

手机使用常识及手机电池不可不知的小常识 手机使用常识 1、使用手机时,不要接触天线,否则会影响
2009-11-23 15:20:121821

爱护笔记本不可不读的金科玉律

爱护笔记本不可不读的金科玉律 忌摔   笔记本电脑的第一大戒就是摔。笔记本电脑一般都装在便携包中,放置时一定要把包放在稳妥
2010-01-20 14:05:33217

笔记本电脑电池不可不知的常识

笔记本电脑电池不可不知的常识 电池的分类和区别   一般我们使用的电池有3种,1.镍铬电池、2.镍氢电池、3.锂电池;它们一般表示为:
2010-01-23 10:06:24605

数码相机术语大全(不可不读)

数码相机术语大全(不可不读) 1.ae锁 ae是au
2010-01-30 14:06:12475

不可不知的投影幕选购常识

不可不知的投影幕选购常识 前言:   当今,无论是商务活动,还是居家生活,人们对于大屏幕显示画面、高亮度、高分辨率以及高
2010-02-10 11:10:26670

有关域名的不可不t知的八个问题

有关域名的不可不t知的八个问题 了解域名的相关知识,下面有关域名的八个经典问题,将会有助于你了解域名相关问题。  
2010-02-23 13:50:27686

电脑木马识别的三个小命令(不可不知)

电脑木马识别的三个小命令(不可不知) 一些基本的命令往往可以在保护网络安全上起到很大的作用,下面几条命令的作用就非常突出。
2010-02-23 14:17:191091

显示卡不可不知15大参数

显示卡不可不知15大参数 1、 帧率(Frames
2010-01-12 09:49:04816

安防产业不可不知的PLC技术与应用

您能想象有一天,供应电灯照明的电力线竟然也同时在传送朋友寄给您的E-MAIL吗?或是只要在身边最近的插座插上一个辅助上网的小装置,你就可以尽情和网友聊MSN,不用担心有讯号死
2011-03-25 13:41:4584

示波器不可不知的问题

Q1: 在高速串行测试时,对测试所需 示波器 有什么样的要求?哪几个指标是最关键的? A: 基本来说对带宽和采样率要满足串行信号的要求,接下来就需要考察是否是差分信号,以及示波器
2011-10-07 13:27:241166

CAM350不可不知的两大应用技巧

有些资料的文字层有很多文字框,且文字框到线路PAD 间距不满足制程能力时;当资料有大面积铜箔覆盖,线路或PAD与铜皮的距离不在制作要求之内,且外型尺寸又较大时...可借鉴本文的处理方法
2013-01-23 10:36:143698

[2.1.5]--2.1.5不可不知的机器学习的术语

人工智能
jf_75936199发布于 2023-03-10 23:27:30

关注车联网的你不可不知的行车神器

近年来,由于云端运算与车载通讯的演进,车辆结合云端服务产生更多的效益。本文将介绍车载应用新趋势,以及结合网路形成所谓的车载云,带给驾驶人便捷安全的服务。
2015-04-14 15:52:19988

不可不知的机器学习的术语(1)#人工智能

人工智能
未来加油dz发布于 2023-07-04 14:16:25

不可不知的中国机器人后市场

机器人后市场指的是机器人销售之后的维修保养、二手机器人买卖与再制造、机器人金融与租赁等一系列市场。中国机器人后市场尚在萌芽之中,其中的机会不可限量。本文分析了中国机器人后市场可能的机会,并参照其他行业后市场,推测几种可能的商业模式。
2016-10-18 14:02:211316

微软Azure大放异彩 Azure术语不可不知

微软Azure大数据服务魅力凸显 Azure术语不可不知 大数据正上增工,不仅是规模,知名度也在上升。
2016-11-10 11:02:11977

OPPO手机这5个小技巧,简单又实用!不可不知

OPPO可以说是如今最火的国产手机品牌之一,其R9系列在今年表现相当出色,销量突破两千万台,可见该机的受欢迎程度之高。除了精致的外观设计和出色的相机表现,在系统方面,OPPO为其定制了基于安卓6.0的ColorOS 3.0,其中有很多好用有趣的功能,今天小编就教大家几招~
2017-01-17 10:58:3912728

2017不可不知的人工智能8大趋势

2017年已然开始,人工智能将会是大家关注的焦点。无论是创业者还是投资人,无论是国内还是国外,都掀起了人工智能热潮。那么,2017年人工智能会有哪些行业趋势呢?
2017-02-07 10:32:37639

确保系统更加可靠运行,这七大技巧不可不知

就像很遥远年代的人们思想还很保守,固守着自己一方净土独享着一份安逸。总认为天圆地方一直在平淡而充实的生活,又
2017-09-07 15:12:188743

不可不知的,关于小电流测量技巧

IC测试机因为是高端测量,会受到内部开关,引线,pcb板等影响,所以最小电流量程一般为1UA左右;JUNO机等一些分立器件专用测试机,采用低端测量,加上特殊的布线等方式可以达到NA级。我们这里讨论的是采用一种简单通用的方式,实现NA级或NA级以下电流的测试。
2017-10-27 15:50:1316318

不可不知的断路器原理

当无漏电流或漏电流达不到动作电流时,零序电流以感应出的电压不足以触发可控硅G 极(控制极),此时A极(阳极)与K极(阴极)之间相当于一个大电阻达1M(1M=1000000欧姆)以上,脱扣器线圈一般为几十欧姆(30-60欧姆左右),脱扣器线圈与可控硅等效于串联状态。
2017-11-02 13:49:544319

不可不知的11个Linux命令

Linux命令行吸引了大多数Linux爱好者。一个正常的Linux用户一般掌握大约50-60个命令来处理每日的任务。Linux命令和它们的转换对于Linux用户、Shell脚本程序员和管理员来说是最有价值的宝藏。有些Linux命令很少人知道,但不管你是新手还是高级用户,它们都非常方便有用。
2017-11-09 12:14:431248

不可不知的交流UPS电池组应用5大问题

在交流UPS系统蓄电池组电气短路的起因中,蓄电池漏液造成对电池架短路或绝缘度下降,造成正负极通过电池架间接短路,一直是发生几率较高、最为难以判断和发现,但后果却非常严重的疑难故障。
2017-11-13 09:59:244333

不可不知的手机快充小技巧

虽然现在的很多智能手机拥有快充功能,然而大家还是抱怨手机充电速度太慢、手机耗电速度太快!手机充电问题似乎成为了大家关注的重点,那么如何充电能够加快充电速度呢?
2017-12-04 14:10:303450

区块链不可不知的4大基础问题

区块链是金融领域业界人士特别看重的地方。区块链的报导一篇接着一篇,可真正能读懂它的人却是十分的少。区块链本身意义就是交易信用和交易成本的问题,比如说比特币是就是区块链的一种典型应用范例。
2017-12-15 15:20:461141

不可不防的物联网和人工智能五大隐忧

随着物联网、人工智能技术的发展越来越快,我们所面临的挑战也越来越多,全是数据的物联网怎么把入侵者挡在门外?这五大隐忧不可不提防。
2017-12-26 15:33:49859

示波器不可不知的12项功能

示波器是目前应用十分广泛的测试仪器,本文介绍了它的12种功能。
2018-01-16 09:23:4216843

不可不知的精密电阻排行榜

一个好的精密电阻,必须具备老化小、温飘小、偏差小的特点,同时最好具备可靠性高、功率余量大温升小、噪音低、串联电感分布电容小、电压系数小、焊接、振动及拉伸不容易变化等。
2018-01-24 16:20:2533279

什么是IGBT?不可不知的内容

从功能上来说,IGBT就是一个电路开关,用在电压几十到几百伏量级、电流几十到几百安量级的强电上的。(相对而言,手机、电脑电路板上跑的电电压低,以传输信号为主,都属于弱电。)可以认为就是一个晶体管,电压电流超大而已。
2018-03-19 14:37:0010768

电源常见的拓扑结构精华汇总工程师不可不知的电源11种拓扑结构

工程师不可不知的电源11种拓扑结构基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boo
2018-04-22 10:06:3137420

不可不知的海思方案安防产品标配DC/DC

不可不知的海思方案安防产品标配DC/DCMP1494和MP1495是两款高频同步整流降压型开关模式转换器,内置功率MOSFET。它提供了一个非常紧凑的解决方案,可在宽输入电源范围内实现2A/3A连续
2018-06-06 11:59:37467

不可不知的整流电路

图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计。
2018-06-11 17:27:384660

智能制造新趋势:今年不可不知的十大热点!

李培根博士在2018(第七届)中国信息化与工业化融合发展高峰论坛上发表了精彩演讲并分享了2017-2018中国制造业及智能制造的十大热点,结合行业发展与技术的个方面做了总结与分享。
2018-08-29 15:49:203310

PCB板工艺不可不知的五大小原则

本文主要详细阐述了PCB板工艺不可不知的小原则。
2018-10-05 08:48:005723

电气人不可不知的45个电机知识盘点

本文主要汇总了电气人不可不知的45个电机知识,具体的跟随小编一起来了解一下。
2018-10-05 09:06:004470

多层陶瓷电容器和独石电陶瓷容器有什麼区别?

【工程师小贴士】两点不可不知的多层陶瓷电容器和独石电陶瓷的区别|量度螺口直径的检测结过都是低于规格书所写 ?
2019-06-27 21:24:242690

选择智能锁 这三个门道得弄清楚

目前,智能锁价格在2000~4000元可以轻松入手,不过选择智能锁有三个门道,你不可不知
2020-03-16 11:11:01477

PLC维修不可不知的八项重点

输入检查是利用输入LED指示灯识别,或用写入器构成的输入监视器检查。当输入LED不亮时,可初步确定是外部输入系统故障,再配合万用表检查。如果输出电压不正常,就可确定是输入单元故障。当LED亮而内部监视器无显示时,则可认为是输入单元、CPU单元或扩展单元的故障。
2021-03-23 15:41:05679

不可不知的电子工程常用的6大电子元器件,了解一下!资料下载

电子发烧友网为你提供不可不知的电子工程常用的6大电子元器件,了解一下!资料下载的电子资料下载,更有其他相关的电路图、源代码、课件教程、中文资料、英文资料、参考设计、用户指南、解决方案等资料,希望可以帮助到广大的电子工程师们。
2021-04-19 08:42:0978

你知道什么是晶体管微缩吗?它又是个什么情况呢?

你听说过晶体管微缩吗?晶体管微缩是什么情况?作为硬件工程师,不可不知。半导体行业中,“微缩(Scaling)”是一个经
2021-04-28 09:49:272563

超强盘点!10款不可不知的PC端设计软件!

相信有很多人都很羡慕那些设计大神能够做出杰出的设计,但你知不知道那些大神是用什么软件做出来的呢?下面介绍的这10款软件都是设计大神钟爱的,仔细看一看,总有一款适合你。 1.CorelDRAW
2021-10-25 17:50:24599

不可不知的STC单片机中特殊用法的IO

简单说就是因为STC单片机的IO有好多都带有复用功能,在单片机上电复位后,这些复用功能引脚的默认状态有一些特殊的规定或处理办法,若你不知晓,很有可能出现灾难性的问题,下面我们就来具体说说这些特殊的IO的用法。
2022-02-09 11:37:353

不可不知的STC单片机中特殊用法的IO

IO的特殊用法是什么鬼?简单说就是因为STC单片机的IO有好多都带有复用功能,在单片机上电复位后,这些复用功能引脚的默认状态有一些特殊的规定或处理办法,若你不知晓,很有可能出现灾难性的问题,下面我们就来具体说说这些特殊的IO的用法。
2022-02-10 11:19:413

LED驱动设计不可不知的五大关键点

1、芯片发热 这主要针对内置电源调制器的高压驱动芯片。假如芯片消耗的电流为2mA,300V的电压加在芯片上面,芯片的功耗为0.6W,当然会引起芯片的发热。驱动芯片的最大电流来自于驱动功率MOS管的消耗,简单的计算公式为I=cvf。 考虑充电的电阻效益,实际I=2cvf,其中c为功率MOS管的cgs电容,v为功率管导通时的gate电压,所以为了降低芯片的功耗,必须想办法降低c、v、f。如果c、v、...
2022-02-11 15:07:271

SpinalHDL中不可不知的位拼接符

在之前写Verilog时,位拼接符是一个很常见的东西,今天来看下在SpinalHDL中常见的位拼接符的使用。
2022-11-12 11:34:23840

这些网络水晶头小常识不可不知

水晶头之所以被称为水晶头,是因为它的外表晶莹透亮,作为一种最基础、最不起眼的周边配套部件,但功能和作用可不小!它适用于设备间或水平子系统的现场端接。常见的水晶头有RJ45网络水晶头和RJ11电话水晶头两种。
2022-12-16 10:29:081784

关于碳化硅不可不知的这些事

碳化硅 (SiC) 是一种由硅 (Si) 和碳 (C) 组成的半导体化合物,属于宽带隙 (WBG) 材料系列。它的物理结合力非常强,使半导体具有很高的机械、化学和热稳定性。宽带隙和高热稳定性允许 SiC器件在高于硅的结温下使用,甚至超过 200°C。碳化硅在功率应用中的主要优势是其低漂移区电阻,这是高压功率器件的关键因素。 得益于出色的物理和电子特性,基于 SiC 的功率器件正在推动电力电子设备的
2023-02-20 16:01:330

MOSFET基础电路不可不知

MOSFET电路不可不知MOSFET已成为最常用的三端器件,给电子电路界带来了一场革命。没有MOSFET,现在集成电路的设计似乎是不可能的。它们非常小,制造过程非常简单。由于MOSFET的特性,模拟
2022-05-10 16:35:25802

近万字长文盘点!2022十大AR工业典型案例,不可不看!

近万字长文盘点!2022十大AR工业典型案例,不可不看!
2023-01-17 14:43:03963

MOSFET电路不可不知

MOSFET已成为最常用的三端器件,给电子电路界带来了一场革命。没有MOSFET,现在集成电路的设计似乎是不可能的。它们非常小,制造过程非常简单。由于MOSFET的特性,模拟电路和数字电路都成功地
2023-05-09 09:46:23675

配网故障定位:从小白到专家,你不可不知的技能!??

⚡️大家好,我是你们的小助手,今天我们要聊一聊【[配网故障定位]】这个技术活。是不是经常听到"配网故障",但是却不知道它具体指的是什么?别急,我在这里一一为你揭晓。 首先,让我们来明确一下
2024-01-04 10:10:54118

已全部加载完成