0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

“难得”的“NAND”究竟是怎样的存在?

传感器技术 来源:YXQ 2019-07-19 16:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本篇文章要说的词是“NAND”,谐音“难得”。说到这个“难得”,那就是一把辛酸泪了。上个月东芝位于日本四日市的5座NAND闪存厂发生了停电意外,虽然在约13分钟后恢复正常供电,但停工了5天,而且有3座晶圆厂要到本月中旬才能恢复生产。

此后,日本政府宣布,从7月4日起开始管控向南韩出口3种生产半导体、智能手机与面板所需的关键材料,造成存储器产业下游模组厂出现提高报价状况。

当然,目前还难以衡量东芝NAND闪存厂停电事件以及日本对韩国制裁事件对NAND闪存市场到底影响有多大,但发展形势不好判断,外界分析师用一个词概括——市场的不确定性。那么,这个“难得”的“NAND”究竟是怎样的存在?

诞 生

NAND要从哪里开始讲起呢?话说当年,盘古手握……啊不对,该技术并没有久远到那么夸张。最远不过从1943年说起,那年舛冈富士雄在日本群马县高崎市出生了。

1971年,舛冈富士雄在日本东北大学拿到工程系电子工程专业的博士学位,随后拿到了东芝的offer。起初在半导体的研究开发部门,1977年被调至营业部门。不过那时舛冈富士雄显然不是做销售的料,对IBM和英特尔等开展了各种推销活动,却卖不出去货。

东芝心想,算了还是让这哥们干技术吧。一年后,舛冈富士雄被调离营业部门转入半导体工厂的制造技术部门。上帝给你关了销售才能这个门,偷偷给你开了技术大牛这扇窗。舛冈富士雄在技术做出了不少卓越贡献。

过了3、4年,舛冈富士雄受ULSI研究中心的当时研究中心所长武石喜幸赏识,被调回研发部。并在1984年首先提出了快速闪存存储器ULSI的概念。然而,这并未得到东芝及日本社会的重视。

但是,英特尔看到了这项发明的潜力,与东芝签订了交叉授权许可协议,成立了300人的闪存事业部。当时英特尔技术制造本部副社长、香港出身的Stefan Lai评价称,英特尔改良了东芝发明的NOR,并成功实现批量生产和低价格,同时炫耀着自己豪宅,赞美“这就是美国梦”。

尽管东芝发明了NOR,但英特尔先行将其发展起来。舛冈富士雄并不服气,在1987年又提出NAND的概念,并且和10位各具特色的同事共同研发,仅3年时间就获得成功,并准备推动新发明实现产业化。

由于他的贡献,东芝奖励了他一笔几百美金的奖金和一个位置很高却悠闲的职位。做为一个工程师,他忍受不了这种待遇,不得不辞职进入大学继续科研。

东芝公司的短视很快招来了市场的惩罚。Flash市场迅速扩张,在90年代末期就达到数百亿美金的市场规模,Intel是这个市场的霸主,而东芝公司只享有很小的份额(NAND,NOR几乎没有)。在很长一段时间,东芝公司甚至不承认NOR flash是他发明的,说是Intel发明的。直到IEEE在1997年颁给富士雄特殊贡献奖后才改口。

富士雄觉得自己的贡献被东芝公司抹杀了,他愤然于2006年起诉了公司,并索要10亿日元的补偿。最后他和东芝公司达成和解,得到8700万日元(合758,000美元)。

概 念

Flash主要有两种NOR Flash和NADN Flash。

NOR flash是Intel公司1988年开发出了NOR flash技术。NOR的特点是芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在flash 闪存内运行,不必再把代码读到系统RAM中。NOR的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除 速度大大影响了它的性能。

NAND Flash内部采用非线性宏单元模式,为固态大容量内存的实现提供了廉价有效的解决方案。Nand-flash存储器具有容量较大,改写速度快等优点,适用于大量数据的存储,因而在业界得到了越来越广泛的应用,如嵌入式产品中包括数码相机、MP3随身听记忆卡、体积小巧的U盘等。

从存储原理来看,两种闪存都是用三端器件作为存储单元,分别为源极、漏极和栅极,与场效应管的工作原理相同,主要是利用电场的效应来控制源极与漏极之间的通断,栅极的 电流消耗极小,不同 的是场效应管为单栅极结构,而 FLASH 为双栅极结构,在栅极与硅衬底之间增加了一个浮 置栅极。

浮置栅极是由氮化物夹在两层二氧化硅材料之间构成的,中间的氮化物就是可以存储电荷的 电荷势阱。上下两层氧化物的厚度大于 50 埃,以避免发生击穿。

此外,根据NAND闪存中电子单元密度的差异,又可以分为SLC(单层次存储单元)、MLC(双层存储单元)、TLC(三层存储单元)以及QLC(四层存储单元)此四种存储单元在寿命以及造价上有着明显的区别。

SLC(单层式存储),单层电子结构,写入数据时电压变化区间小,寿命长,读写次数在10万次以上,造价高,多用于企业级高端产品。

MLC(多层式存储),使用高低电压的而不同构建的双层电子结构,寿命长,造价可接受,多用民用高端产品,读写次数在5000左右。

TLC(三层式存储),是MLC闪存延伸,TLC达到3bit/cell。存储密度最高,容量是MLC的1.5倍。造价成本最低,使命寿命低,读写次数在1000~2000左右,是当下主流厂商首选闪存颗粒。

QLC则是Quad-Level Cell,或者叫4bit MLC,电压从0000到1111有16种变化,容量增加了33%,但是写入性能、P/E寿命会再次减少。

随着时代发展,NAND闪存颗粒的技术突飞猛进,并且逐渐形成了几大超大规模的专业闪存颗粒制造商,这些能够直接切割晶圆和分离出NAND闪存颗粒的厂商,一般称之为闪存颗粒原厂。

随着晶圆物理极限的不断迫近,固态硬盘上单体的存储单元内部的能够装载的闪存颗粒已经接近极限了,更加专业的术语表述就是单die能够装载的颗粒数已经到达极限了,要想进一步扩大单die的可用容量,就必须在技术上进行创新。

于是,3D NAND技术也就应运而生了。

2D NAND真实的含义其实就是一种颗粒在单die内部的排列方式,是按照传统二维平面模式进行排列闪存颗粒的。

相对应的,3D NAND则是在二维平面基础上,在垂直方向也进行颗粒的排列,即将原本平面的堆叠方式,进行了创新。

利用新的技术(即3D NAND技术)使得颗粒能够进行立体式的堆叠,从而解决了由于晶圆物理极限而无法进一步扩大单die可用容量的限制,在同样体积大小的情况下,极大的提升了闪存颗粒单die的容量体积,进一步推动了存储颗粒总体容量的飙升。

现 状

今年5月份,全球市场研究机构集邦咨询半导体研究中心 ( DRAMeXchange ) 发布了 2019 年第一季度 NAND Flash 品牌商营收与市占排名。

其中,三星目前仍是营收最高的 NAND Flash 厂商,尽管较上季下滑 25%,但依然达到了 32.29 亿美元。同时市场份额保持在 29.9%,排名第一。SK 海力士排名第二,第一季 NAND Flash 营收衰退 35.5%,为 10.23 亿美元。东芝第三,第一季营收达 21.8 亿美元,季减 20.2%。

西数第四,营收达 16.10 亿美元,季减 25.9%。美光第五,营收季衰退 18.5%,达到 17.76 亿美元。英特尔排名第六本季营收来到 9.15 亿美元,较上季衰退 17.3%。

此外,DRAMeXchange不久前发文表示,中国NAND厂商长江存储器技术公司已经将其64层Xtacking芯片样品提交给各潜在客户与控制器供应商,主要销售重点指向中国国内市场。YMTC方面正在其位于武汉的新工厂压缩32层芯片的生产,计划为接下来的64层产品提供产能空间。公司还有意在2020年转向128层NAND以进一步降低产品成本并提升存储容量出货量。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 东芝
    +关注

    关注

    6

    文章

    1485

    浏览量

    123905
  • NAND
    +关注

    关注

    16

    文章

    1747

    浏览量

    140448

原文标题:被“日本制裁韩国事件”推向风口浪尖的NAND闪存,到底是怎样的存在?

文章出处:【微信号:WW_CGQJS,微信公众号:传感器技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    一文了解特性阻抗

    我们常听到的“特性阻抗”究竟是什么?它与通常所说的“阻抗”或“直流电阻”有何区别?虽然“特性阻抗”和“阻抗”都使用[Ω]单位,但它们之间存在什么差异?
    的头像 发表于 09-17 15:07 942次阅读
    一文了解特性阻抗

    标准化考场是什么?

    很多现在都在建设标准化考场,标准化考场究竟是什么呢?
    的头像 发表于 09-05 16:45 1038次阅读
    标准化考场是什么?

    多摩川高分辨率编码器:究竟如何赋能数控机床超精密运动控制?

    在现代制造业中,数控机床的应用极为广泛,其加工精度直接影响着产品的质量和性能。而多摩川高分辨率编码器的出现,为数控机床的超精密运动控制带来了新的突破。那么,它究竟是如何实现这一赋能的呢?让我们一探究竟
    的头像 发表于 08-04 17:59 811次阅读

    功率半导体究竟是什么

    站在战略升级的关键节点,闻泰科技正在全力聚焦半导体业务,开启全新发展阶段。值此之际,公司特别推出 《探秘“芯”世界》系列专题,邀您一同探索半导体的奥秘,见证闻泰科技以创新引领行业的 "芯" 力量。
    的头像 发表于 07-09 11:42 1027次阅读

    超声波液位计究竟是什么?

    液位计
    jzyb
    发布于 :2025年06月03日 16:10:12

    单片机内置ADC和外部ADC的对比

    ADC 江湖风云变幻,局势不断升级,紧张刺激!究竟是内置 ADC 更胜一筹还是外置 ADC 棋高一着?
    的头像 发表于 05-14 15:24 1152次阅读

    FOC电机控制究竟该如何学?

    学习FOC电机控制究竟是学哪些内容? 电机知识 软件知识 纯分享贴,有需要可以直接下载附件获取完整资料! (如果内容有帮助可以关注、点赞、评论支持一下哦~)
    发表于 05-09 14:09

    工程师在产品选型的时究竟是选CAN还是CANFD接口卡呢?

    很多工程师在产品选型的时候会疑惑,究竟是选CAN接口卡还是CANFD接口卡呢?两者之间有什么区别呢?影响选择的关键因素又是什么?我们今天一个一个来拆解。1.波特率传统的CAN接口卡仅有一个波特率,即
    的头像 发表于 03-21 11:37 712次阅读
    工程师在产品选型的时<b class='flag-5'>究竟是</b>选CAN还是CANFD接口卡呢?

    戴尔PowerScale为影视行业带来哪些价值

    那么,究竟是什么促使创作者们选择了Dell PowerScale?而它所具备的特性又能为影视行业带来怎样的价值呢?
    的头像 发表于 03-07 14:57 985次阅读

    三极管和MOS管的电平转换电路为什么有毛刺?如何解决?

    ,如图电路; 结果发现在3.3V这一侧,也就是RXD位置还是测到毛刺; 有谁知道这究竟是为什么吗?
    发表于 03-06 06:24

    室内导航究竟是如何实现的

    作为物联网智能硬件的引领者,云里物里当然不是来聊电影的,而是想借此机会,和大家探讨一下:室内导航究竟是如何实现的?它背后的技术原理是什么?接下来,让我们一起揭开室内导航的神秘面纱。
    的头像 发表于 02-12 13:50 888次阅读

    ADS1298R PACE_OUT1和PACE_OUT2这两条引腿究竟是输入还是输出?有什么用?怎样使用?

    PACE_OUT1和PACE_OUT2这两条引腿究竟是输入还是输出?有什么用?怎样使用?
    发表于 02-12 07:56

    ADS1281EVM-PDK板子无法使用怎么解决?

    板子上正负10V电压已加,USBStyx driver 已经安装,通过母板供电,但最后 软件界面上的Acquire 按键呈现灰白色,无法按下,如下图红圈区域所示: 有哪位能告诉我究竟是哪里出了问题?该不会是硬件坏了吧?
    发表于 01-22 07:54

    ADS8383没有busy输出是哪里出了问题?

    的实现,理论上应该busy有输出,但是busy测试到没有输出,电源供电正常,时序也正常,那么接下来该如何考虑究竟是哪里出了问题?
    发表于 12-26 06:38

    LoRa数据究竟是如何传输的?

    一概述在物联网(IoT)的浪潮中,LoRa(LongRange)技术凭借其远距离通信、低功耗和低成本的优势,成为了众多应用场景中的佼佼者。那么,LoRa数据是如何在空中传输的呢?让我们一起揭开这个神秘的面纱。二简介LoRa,即长距离无线电技术,是一种专为物联网设计的无线通信技术。它通过扩频调制技术,将信号扩展到更宽的频带,从而降低信号的功率谱密度,提高抗干扰
    的头像 发表于 12-19 19:33 1575次阅读
    LoRa数据<b class='flag-5'>究竟是</b>如何传输的?