0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

技术 | 深度学习在计算机视觉领域的瓶颈已至

机器视觉 来源:YXQ 2019-07-05 10:07 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

计算机视觉奠基者之一,霍金的弟子,约翰霍普金斯大学教授Alan Yuille提出“深度学习在计算机视觉领域的瓶颈已至。”

人工智能的发展过程看,深度学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。Alan Yuille认为,现在做AI不提神经网络,成果都很难发表了,这不是一个好势头。如果人们只追求神经网络的潮流,抛弃所有老方法,也不去想如何应对深度网络的局限性,那么这个领域可能很难有更好的发展。

深度学习确实是一个让人向往的技术,这无可辩驳。其实,神经网络这个概念自上个世纪60年代就已经出现了,只是因为最近在大数据、计算机性能上面出现的飞跃,使得它真正变得有用起来,由此也衍生出来一门叫做“深度学习”的专业,当前国内涉及计算机视觉领域中,越来越多的人工智能公司或者研究机构投身到“深度学习”的浪潮中了,国内诞生了如旷视科技、商汤科技、极链科技Video++、依图科技等优秀的初创AI企业。旨在将复杂的神经网络架构应用在数据建模上,最终带来前所未有的准确性。

现在的技术开发成果也确实让人印象深刻。计算机现在可以辨识图片和视频里的东西都是什么,可以将语音转化成为文字,其效率已经超过了人力范畴。

Google也将GoogleTranslate服务中添加了神经网络,现在的机器学习在翻译水平上已经逐步逼近人工翻译。现实中的一些应用也让人大开眼界,就比如说计算机可以预测农田作物产量,其准确性比美国农业部还高。机器还能更加精准的诊断癌症,其准确度也比从医多年的老医师还要高。

美国国防部高级研究计划局的一名负责人John Lauchbury形容如今人工智能领域内存在着三股浪潮。

第一股浪潮:知识库,或是类似于IBM所开发的“深蓝”和Waston专家系统。

第二股浪潮:数据学习,包括了机器学习和深度学习。

第三股浪潮:情境适应,其中涉及通过利用少量数据,在现实生活中构建出一个可靠的,解释型的模型。

从这三股浪潮中,可以发现目前深度学习算法的研究工作进展不错。

但深度学习的成果是建立在极其苛刻的前提条件之上。

不管是“监督学习”,亦或者是“强化学习”,它们都需要大量的数据进行支撑,而且在提前计划上面表现的非常差,只能做某些最简单直接的模式辨认工作。

相比之下,人就能够从极少数的例子上学到有价值的信息,并且善于在时间跨度很长的计划,在针对某个情境上有能力自己建造一个抽象模型,并利用这样的模型来做站在最高处的归纳总结。

自动驾驶汽车为例,如果你是采用的“监督学习路径”,那么你需要从汽车驾驶的情境中提取海量的数据,而且还要以明确标示出来的“动作标签”进行分类挑拣,比如“停止”“行驶”等。再接下来,你还需要训练一个神经网络,使得它能够从眼下的情景和所与之相对应的行动之间构建因果联系。

如果你是采用的“强化学习路径”,那么你应该给算法一个目标,让它能够独立地判断当下最优解是什么,电脑在不同的情境之下,为了实现避免撞车的这个动作,它估计要宕机上几千次。

虽然现在已经有了比较大的进展,一些神经网络可以从数据层面,在相当大的样本数量上给出一个惊人的成果,但是它们如果单独拿出一个出来,还是不可靠的,所犯的错误也是人一辈子都不可能犯的。

数据质量的不稳定性带来的是不可靠、不准确,以及不公平。同样,输出的结果,还得取决于输入的数据质量如何。

神经网络中如果输入的数据是不准确的,不完整的,那么结果也会错的离谱,有些时候会造成巨大的损失。不要小看这样的风险,错误的输出可能会造成极大的危害,以GAN为例,有一些不轨之徒可以以一种人类肉眼无法识别的方式篡改图片,让机器错误的辨识图片。

篡改的图片和最初的图片在我们看来可能是一致的,但是无人驾驶汽车中,汽车就会受到威胁。

深度学习依然存在瓶颈,但目前它要发挥的作用所需要的前置条件太过苛刻,输入数据对其最终的结果有着决定性的影响。如果要真正达到理想中的人工智能,这些瓶颈还有待于人们的进一步突破。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计算机视觉
    +关注

    关注

    9

    文章

    1714

    浏览量

    47452
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123902

原文标题:【研究】深度学习“瓶颈”已至 计算机视觉如何突破困局?

文章出处:【微信号:www_51qudong_com,微信公众号:机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    行业市场具备深度学习能力的视觉系统占比突破40%,催生大量复合型技术岗位需求: • 岗位缺口:视觉
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    、锂电池产线的视觉检测工位。 二、职业发展: 目前行业市场具备深度学习能力的视觉系统占比突破40%,催生大量复合型
    发表于 12-03 13:50

    2025中国计算机大会DPU技术论坛成功举办

    近日,备受瞩目的第22届中国计算机大会(CNCC2025)哈尔滨开幕。本届大会注册人数突破1.2万人,汇聚了来自全球计算机领域的顶尖学者、产业领袖、青年学子及国际组织代表。大会以“数
    的头像 发表于 11-02 09:29 380次阅读

    摩尔线程亮相2025中国计算机大会

    10月23日25日,第二十二届中国计算机大会(CNCC2025)哈尔滨成功举办。大会以“数智赋能,无限可能”为主题,汇聚了来自全球计算机领域
    的头像 发表于 10-27 17:46 705次阅读

    蔚来出席CNCC 2025中国计算机大会技术论坛

    2025年10月23日,CNCC 2025中国计算机大会技术论坛「AI落地应用的主战场——智能电动汽车」哈尔滨成功举行。论坛聚焦计算机技术与汽车产业的
    的头像 发表于 10-27 15:47 307次阅读

    STM32计算机视觉开发套件:B-CAMS-IMX摄像头模块技术解析

    CMOS RGB图像传感器、ISM330DLC惯性运动单元和VL53L5CX ToF传感器。B-CAMS-IMX可用于任何具有MIPI CSI-2® 接口(带22引脚FFC连接器)的STM32开发板,轻松STM32微控制器和微处理器上实现全功能计算机
    的头像 发表于 10-20 09:46 710次阅读
    STM32<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>开发套件:B-CAMS-IMX摄像头模块<b class='flag-5'>技术</b>解析

    如何在机器视觉中部署深度学习神经网络

    人士而言往往难以理解,人们也常常误以为需要扎实的编程技能才能真正掌握并合理使用这项技术。事实上,这种印象忽视了该技术为机器视觉(乃至生产自动化)带来的潜力,因为深度
    的头像 发表于 09-10 17:38 692次阅读
    如何在机器<b class='flag-5'>视觉</b>中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经网络

    易控智驾荣获计算机视觉顶会CVPR 2025认可

    近日,2025年国际计算机视觉与模式识别顶级会议(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)美国田纳西州纳什维尔召开。
    的头像 发表于 07-29 16:54 981次阅读

    自动化计算机经过加固后有什么好处?

    让我们讨论一下部署坚固的自动化计算机的一些好处。1.温度范围宽自动化计算机经过工程设计,配备了支持宽温度范围的组件,使自动化计算解决方案能够各种不同的极端环境中运行。自动化
    的头像 发表于 07-21 16:44 419次阅读
    自动化<b class='flag-5'>计算机</b>经过加固后有什么好处?

    工业计算机与商用计算机的区别有哪些

    工业计算机是一种专为工厂和工业环境设计的计算系统,具有高可靠性和稳定性,能够应对恶劣环境下的自动化、制造和机器人操作。其特点包括无风扇散热技术、无电缆连接和防尘防水设计,使其各种工业
    的头像 发表于 07-10 16:36 516次阅读
    工业<b class='flag-5'>计算机</b>与商用<b class='flag-5'>计算机</b>的区别有哪些

    英飞凌边缘AI平台通过Ultralytics YOLO模型增加对计算机视觉的支持

    计算机视觉的支持,扩大了当前对音频、雷达和其他时间序列信号数据的支持范围。增加这项支持后,该平台将能够用于开发低功耗、低内存的边缘AI视觉模型。这将给诸多应用
    的头像 发表于 03-11 15:11 656次阅读
    英飞凌边缘AI平台通过Ultralytics YOLO模型增加对<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的支持

    Arm KleidiCV与OpenCV集成助力移动端计算机视觉性能优化

    生成式及多模态人工智能 (AI) 工作负载的广泛增长,推动了对计算机视觉 (CV) 技术日益高涨的需求。此类技术能够解释并分析源自现实世界的视觉
    的头像 发表于 02-24 10:15 876次阅读

    Quantinuum“Reimei”量子计算机RIKEN正式运行

    )成功安装并全面投入运行。 此次合作中,RIKEN为“Reimei”量子计算机提供了世界级的基础设施,包括为其量身定制的设计、准备及交付工作。这一里程碑式的成就不仅标志着Quantinuum量子计算
    的头像 发表于 02-17 10:21 791次阅读

    AR和VR中的计算机视觉

    ):计算机视觉引领混合现实体验增强现实(AR)和虚拟现实(VR)正在彻底改变我们与外部世界的互动方式。即便是引人入胜的沉浸式
    的头像 发表于 02-08 14:29 2125次阅读
    AR和VR中的<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>

    云端超级计算机使用教程

    云端超级计算机是一种基于云计算的高性能计算服务,它将大量计算资源和存储资源集中在一起,通过网络向用户提供按需的计算服务。下面,AI部落小编为
    的头像 发表于 12-17 10:19 943次阅读