0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA在深度学习领域的应用

sBue_gongkongBB 来源:YXQ 2019-06-28 17:31 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

深度学习机器学习的一个领域,都属于人工智能AI)的范畴。深度学习主要研究的是人工神经网络算法、理论、应用。

自从2006年Hinton等人提出来之后,深度学习高速发展,在自然语言处理、图像处理、语音处理等领域都取得了非凡的成就,受到了巨大的关注。在互联网概念被人们普遍关注的时代,深度学习给人工智能(AI)带来的影响是巨大的,人们会为它隐含的巨大潜能以及广泛的应用价值感到不可思议。

事实上,人工智能(AI)是上世纪就提出来的概念。1957年,Rosenblatt提出了感知机模型(Perception),即两层的线性网络;1986年,Rumelhart等人提出了后向传播算法(Back Propagation),用于三层的神经网络的训练,使得训练优化参数庞大的神经网络成为可能;1995年,Vapnik等人发明了支持向量机(Support Vector Machines),在分类问题中展现了其强大的能力。以上都是人工智能历史上比较有代表性的事件,然而受限于当时计算能力,AI总是在一段高光之后便要陷入灰暗时光——称为:“AI寒冬”。

然而,随着计算机硬件能力和存储能力的提升,加上庞大的数据集,现在正是人AI发展的最好时机。自Hinton提出DBN(深度置信网络)以来,人工智能就在不断的高速发展。在图像处理领域,CNN(卷积神经网络)发挥了不可替代的作用,在语音识别领域,RNN(递归神经网络)也表现的可圈可点。而科技巨头也在加紧自己的脚步,谷歌的领军人物是Hinton,其重头戏是Google brain,并且在去年还收购了利用AI在游戏中击败人类的DeepMind;Facebook的领军人物是Yann LeCun,另外还组建了Facebook的AI实验室,Deepface在人脸识别的准确率更达到了惊人的97.35%;而国内的巨头当属百度,在挖来了斯坦福大学教授Andrew Ng(Coursera的联合创始人)并成立了百度大脑项目之后,百度在语音识别领域的表现一直十分强势。

FPGA(Field Programmable Gate Array)是在PAL、GAL、CPLD等可编程逻辑器件的基础上进一步发展的产物。它是作为专用集成电路领域中的一种半定制电路而出现的,既解决了全定制电路的不足,又克服了原有可编程逻辑器件门电路数有限的缺点[3]。FPGA的开发相对于传统PC、单片机的开发有很大不同。FPGA以并行运算为主,以硬件描述语言来实现;相比于PC或单片机(无论是冯诺依曼结构还是哈佛结构)的顺序操作有很大区别。FPGA开发需要从顶层设计、模块分层、逻辑实现、软硬件调试等多方面着手。FPGA可以通过烧写位流文件对其进行反复编程,目前,绝大多数 FPGA 都采用基于 SRAM(Static Random Access Memory 静态随机存储器)工艺的查找表结构,通过烧写位流文件改变查找表内容实现配置。

FPGA在GPUASIC中取得了权衡,很好的兼顾了处理速度和控制能力。一方面,FPGA是可编程重构的硬件,因此相比GPU有更强大的可调控能力;另一方面,与日增长的门资源和内存带宽使得它有更大的设计空间。更方便的是,FPGA还省去了ASIC方案中所需要的流片过程。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA设计
    +关注

    关注

    9

    文章

    429

    浏览量

    27992
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123890

原文标题:FPGA在深度学习领域的应用

文章出处:【微信号:gongkongBBS,微信公众号:工控网智造工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于学习的外观质量标
    的头像 发表于 11-27 10:19 43次阅读

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 讨论人工智能(AI)或深度学习时,经常会出现“
    的头像 发表于 09-10 17:38 675次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经网络

    AI 辅助逆向抄数:点云优化工具与深度学习建模能力消费电子领域的应用

    消费电子行业快速迭代的背景下,传统逆向抄数技术处理复杂产品结构和满足高效研发需求时逐渐显露出局限性。人工智能(AI)技术的融入,特别是点云优化工具与深度学习建模能力的应用,为消费电
    的头像 发表于 08-22 09:59 487次阅读
    AI 辅助逆向抄数:点云优化工具与<b class='flag-5'>深度</b><b class='flag-5'>学习</b>建模能力<b class='flag-5'>在</b>消费电子<b class='flag-5'>领域</b>的应用

    深度学习对工业物联网有哪些帮助

    深度学习作为人工智能的核心分支,通过模拟人脑神经网络的层级结构,能够自动从海量工业数据中提取复杂特征,为工业物联网(IIoT)提供了从数据感知到智能决策的全链路升级能力。以下从技术赋能、场景突破
    的头像 发表于 08-20 14:56 753次阅读

    自动驾驶中Transformer大模型会取代深度学习吗?

    持续讨论。特别是自动驾驶领域,部分厂商开始尝试将多模态大模型(MLLM)引入到感知、规划与决策系统,引发了“传统深度学习是否已过时”的激烈争论。然而,从技术原理、算力成本、安全需求与
    的头像 发表于 08-13 09:15 3910次阅读
    自动驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    FPGA机器学习中的具体应用

    ,越来越多地被应用于机器学习任务中。本文将探讨 FPGA 机器学习中的应用,特别是加速神经网络推理、优化算法和提升处理效率方面的优势。
    的头像 发表于 07-16 15:34 2621次阅读

    深度学习遇上嵌入式资源困境,特征空间如何破局?

    近年来,随着人工智能(AI)技术的迅猛发展,深度学习(Deep Learning)成为最热门的研究领域之一。语音识别、图像识别、自然语言处理等领域
    发表于 07-14 14:50 1114次阅读
    当<b class='flag-5'>深度</b><b class='flag-5'>学习</b>遇上嵌入式资源困境,特征空间如何破局?

    安路科技助力FPGA产学研深度融合 第一届“国产FPGA教育大会”重庆圆满落幕

    人才的培养和本土化,积极投身大学计划,不断加强与高校的紧密合作,助力产学研融合,持续推动FPGA领域人才培养,赋能国产FPGA产业持续发展。 国产FPGA教育大会,产教融合新里程碑 近
    的头像 发表于 06-05 16:14 1246次阅读

    OpenVINO™工具套件的深度学习工作台中无法导出INT8模型怎么解决?

    无法 OpenVINO™ 工具套件的深度学习 (DL) 工作台中导出 INT8 模型
    发表于 03-06 07:54

    如何排除深度学习工作台上量化OpenVINO™的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO™特定层
    发表于 03-06 07:31

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    。• AI加速器的开发:FPGA被广泛用于开发专为AI算法优化的加速器,例如深度学习推理加速器。这种定制化的硬件设计能够显著提升AI应用的效率。 2.应用领域的拓展• 边缘计算与实时处
    发表于 03-03 11:21

    军事应用中深度学习的挑战与机遇

    ,并广泛介绍了深度学习两个主要军事应用领域的应用:情报行动和自主平台。最后,讨论了相关的威胁、机遇、技术和实际困难。主要发现是,人工智能技术并非无所不能,需要谨慎应用,同时考虑到其局
    的头像 发表于 02-14 11:15 818次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1338次阅读

    AI自动化生产:深度学习质量控制中的应用

    随着科技的飞速发展,人工智能(AI)与深度学习技术正逐步渗透到各个行业,特别是自动化生产中,其潜力与价值愈发凸显。深度学习软件不仅使人工和
    的头像 发表于 01-17 16:35 1208次阅读
    AI自动化生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>在</b>质量控制中的应用

    FPGAAI方面有哪些应用

    提供了强有力的支持。 一、FPGA 深度学习中的应用 深度学习是 AI 的重要分支,涉及海量的
    的头像 发表于 01-06 17:37 2085次阅读