0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习 | autoML自动化深度学习网络设计可行吗?

MZjJ_DIGITIMES 来源:YXQ 2019-05-29 14:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

摘要:机器学习深度学习为其中一分支)技术成为各产业智慧化的核心能力,但是算法的设计复杂,需要专业知识与经验,对于好的人才,需求远大于供给。

机器学习(深度学习为其中一分支)技术成为各产业智慧化的核心能力,但是算法的设计复杂,需要专业知识与经验,对于好的人才,需求远大于供给。为了弥补这个空缺,这几年自动化机器学习工具(autoML)新研究兴起,希望有自动化的系统,在给定问题(通常是标记的数据)之后可以自动生成机器(深度)学习算法。在信息论上,这是非常复杂的问题,需要大量运算资源,所以极具挑战。

autoML研究已经发展一段时间。例如开源软件auto-sklearn,可以自动找出各种(传统、较简易)算法的组合,试着优化整体预测能力,但目前仅局限于参数量较少的简易模型。目前最受瞩目的应该是「神经网络结构搜寻」(Neural Architecture Search; NAS),希望自动设计出解决特定问题的类神经网络,原因是深度学习网络的效能优异,而且有机会在各平台实现,商业机会庞大。

NAS做为热门的研究领域,其原则是在可能的神经网络设计架构中找出最佳的组合。主要的结构(参考附图)包括3部分——可能网络构成空间、候选网络生成(搜寻)策略、网络效能评估策略等。

「可能的网络构成空间」是影响NAS能否收敛的关键因素。试想一下,目前常用的网络参数量都是百万、千万等级,要组合出这些可能性,不可能在有限的时间、运算资源内完成。所以目前的组合考虑大多限缩在某些特定、常用的网络架构(卷积层大小、normalization方式、pooling方法等),压缩整体搜寻的空间。

另一个需要大量运算时间的是对每个找出的候选网络进行「效能评估」,进而修正网络生成的方向。开始时大家对这些候选网络做最完整的参数训练,可以想象需要大量的时间资源,所以较早的研究曾经使用到800个GPU、28天的时间。近来大家采用的策略都是减低训练数据、降低训练次数、共享网络参数,甚至是用推估的方式直接猜测效能,完全省略耗时的网络训练。目前已经可以大大降低所需的运算量。

「候选网络生成」是为了搜寻出可能具有潜力的候选网络,还必须利用之前生成过的网络效能来修正网络生成(搜寻)的方式。所以传统的演化式算法在这些优化过程又需被大量使用,不过一般认为最有效的方式是使用强化学习(reinforcement learning),按照之前生成网络的评量,修正候选网络的生成策略。 在实际的发展上,目前自动生成的网络,在某些实验数据集上已可超越资深研究人员的手工设计。但这也不令人意外,因其是利用大量运算资源来更优化设计效能。此外,NAS算法只能在研究人员认为有效以及给定的网络组件组合中搜寻,尚未有「创造」新组件的能力。

以企业的角度,我认为autoML该视为辅助性的工具来加速深度学习网络的设计。但是主要架构的独特性、竞争性,或是能否在垂直领域中胜出,还是需要了解该领域的资深研究人员给出适合的基本结构,让autoML算法找出最神经网络。

目前应用上,除了优化正确率之外,基于许多场域的实际考虑,我们也会将速度、参数量、耗电量、平台目标(行动、工作站、嵌入系统等)、内存大小等当作多个优化的标准。所以autoML可以加速智慧技术的落地。

autoML的兴起,对产业界(或个人职涯)传递怎样的讯息呢?相关自动化技术绝对会优化、缩短智慧算法研发,但是顶尖的智慧研发人员依旧无法取代。他们与autoML相互搭配,会是最有效率的研发程序。但是对于补习式教育训练出的的机器学习工程师,很可能会被autoML取代。此外,这些工具也会被其他竞争公司使用,能让公司产生差异的还是对前瞻技术的提早投入,以及对于机器学习领域的通盘(或是特殊领域的深度)了解,或是将深度学习技术结合跨领域(如医学、金融、安全等)应用。浅碟型的技术投资,对公司(或职业生涯)长期的发展性都不大!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123907

原文标题:【智慧城市】autoML自动化深度学习网络设计可行吗?

文章出处:【微信号:DIGITIMES,微信公众号:DIGITIMES】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    (第10系列)、YOLOv8-Tiny工业优化版(第9系列),满足产线端设备算力限制,模型推理速度提升300%。 LabVIEW生态整合 作为工业自动化领域主流开发环境,LabVIEW与深度学习的集成
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    讲师,使用LabVIEW开发了大量视觉检测、运动控制、数据采集方面软件,具有丰富的非标自动化设备经验。精通LabVIEW、Halcon、深度学习算法部署,擅长将复杂技术转化为实战课程。授权16项
    发表于 12-03 13:50

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于学习的外观质量标
    的头像 发表于 11-27 10:19 55次阅读

    如何在机器视觉中部署深度学习神经网络

    人士而言往往难以理解,人们也常常误以为需要扎实的编程技能才能真正掌握并合理使用这项技术。事实上,这种印象忽视了该技术为机器视觉(乃至生产自动化)带来的潜力,因为深度学习并非只属于计算机
    的头像 发表于 09-10 17:38 693次阅读
    如何在<b class='flag-5'>机器</b>视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经<b class='flag-5'>网络</b>

    深度学习对工业物联网有哪些帮助

    深度学习作为人工智能的核心分支,通过模拟人脑神经网络的层级结构,能够自动从海量工业数据中提取复杂特征,为工业物联网(IIoT)提供了从数据感知到智能决策的全链路升级能力。以下从技术赋能
    的头像 发表于 08-20 14:56 760次阅读

    自动驾驶中Transformer大模型会取代深度学习吗?

    持续讨论。特别是在自动驾驶领域,部分厂商开始尝试将多模态大模型(MLLM)引入到感知、规划与决策系统,引发了“传统深度学习是否已过时”的激烈争论。然而,从技术原理、算力成本、安全需求与实际落地路径等维度来看,Transforme
    的头像 发表于 08-13 09:15 3917次阅读
    <b class='flag-5'>自动</b>驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    机器人和自动化的未来(2)

    本文是第二届电力电子科普征文大赛的获奖作品,来自西南交通大学黄雯珂的投稿。3机器人与自动化的未来展望随着机器人和自动化技术的不断进步,未来的世界将会是一个高度
    的头像 发表于 04-26 08:33 589次阅读
    <b class='flag-5'>机器</b>人和<b class='flag-5'>自动化</b>的未来(2)

    嵌入式AI技术之深度学习:数据样本预处理过程中使用合适的特征变换对深度学习的意义

      作者:苏勇Andrew 使用神经网络实现机器学习网络的每个层都将对输入的数据做一次抽象,多层神经网络构成
    的头像 发表于 04-02 18:21 1284次阅读

    行业首创:基于深度学习视觉平台的AI驱动轮胎检测自动化

    全球领先的轮胎制造商 NEXEN TIRE 在其轮胎生产检测过程中使用了基于友思特伙伴Neurocle开发的AI深度学习视觉平台,实现缺陷检测率高达99.96%,是该行业首个使用AI平台技术推动缺陷检测自动化流程的企业。
    的头像 发表于 03-19 16:51 786次阅读
    行业首创:基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>视觉平台的AI驱动轮胎检测<b class='flag-5'>自动化</b>

    SLAMTEC Aurora:把深度学习“卷”进机器人日常

    在人工智能和机器人技术飞速发展的今天,深度学习与SLAM(同步定位与地图构建)技术的结合,正引领着智能机器人行业迈向新的高度。最近科技圈顶流DeepSeek简直杀疯了!靠着逆天的
    的头像 发表于 02-19 15:49 725次阅读

    军事应用中深度学习的挑战与机遇

    ,并广泛介绍了深度学习在两个主要军事应用领域的应用:情报行动和自主平台。最后,讨论了相关的威胁、机遇、技术和实际困难。主要发现是,人工智能技术并非无所不能,需要谨慎应用,同时考虑到其局限性、网络安全威胁以及
    的头像 发表于 02-14 11:15 819次阅读

    BP神经网络深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小
    的头像 发表于 02-12 15:15 1341次阅读

    全球的AI+EDA(电子设计自动化)创新项目

    for EDA 项目概述 :Google研究团队推出了AutoML自动化机器学习)平台,应用于电子设计自动化领域。该平台利用AI来
    的头像 发表于 02-07 12:00 3770次阅读

    AI自动化生产:深度学习在质量控制中的应用

    随着科技的飞速发展,人工智能(AI)与深度学习技术正逐步渗透到各个行业,特别是在自动化生产中,其潜力与价值愈发凸显。深度学习软件不仅使人工和
    的头像 发表于 01-17 16:35 1210次阅读
    AI<b class='flag-5'>自动化</b>生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b>在质量控制中的应用

    传统机器学习方法和应用指导

    用于开发生物学数据的机器学习方法。尽管深度学习(一般指神经网络算法)是一个强大的工具,目前也非常流行,但它的应用领域仍然有限。与
    的头像 发表于 12-30 09:16 1982次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导