卷积神经网络仿造生物的视知觉(visual perception)机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化(grid-like topology)特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程(feature engineering)要求。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
FPGA
+关注
关注
1655文章
22283浏览量
630181 -
音频
+关注
关注
31文章
3134浏览量
84919 -
神经网络
+关注
关注
42文章
4827浏览量
106783
发布评论请先 登录
相关推荐
热点推荐
什么是深度学习?使用FPGA进行深度学习的好处?
FPGA实现。易于适应新的神经网络结构深度学习是一个非常活跃的研究领域,每天都在设计新的 DNN。其中许多结合了现有的标准计算,但有些需要全新的计算方法。特别是在具有特殊结构的
发表于 02-17 16:56
基于FPGA的深度卷积神经网络服务优化和编译测试
,自然语言处理,推荐算法,图像识别等广泛的应用领域。 FPGA云服务器提供了基于FPGA的深度卷积神经网络加速服务,单卡提供约3TOPs的定
发表于 11-15 16:56
•1033次阅读
如何通过FPGA实现深度卷积网络(3)
卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也
卷积神经网络的介绍 什么是卷积神经网络算法
的深度学习算法。CNN模型最早被提出是为了处理图像,其模型结构中包含卷积层、池化层和全连接层等关键技术,经过多个卷积层和池化层的处理,CNN可以提取出图像中的特征信息,从而对图像进行分
卷积神经网络和深度神经网络的优缺点 卷积神经网络和深度神经网络的区别
深度神经网络是一种基于神经网络的机器学习算法,其主要特点是由多层神经元构成,可以根据数据自动调整神经元之间的权重,从而实现对大规模数据进行预测和分类。
发表于 08-21 17:07
•4976次阅读
卷积神经网络的原理与实现
1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经
深度学习与卷积神经网络的应用
随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识
卷积神经网络的实现原理
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经

如何用FPGA技术实现深度卷积网络(7)
评论