0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能“大跃进”? IBM:未来10年,AI计算性能效率提升千倍

mK5P_AItists 来源:YXQ 2019-05-27 15:37 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

140多前的1879年,爱迪生经过几千次试验发明了电灯;之后过了90年的1969年美国把人类送到了月球,1970年空中客车公司诞生。在1870年代,人类初次进入电力时代的时候,没有人能够想到有一天人类可以乘“电”飞上月球、普通人也可商用飞行。而今天,我们初次进入了“智能+”时代,人工智能应用刚刚进入“电灯”阶段;未来,智能计算将把人类送往什么样的“月球”?开发出什么样的人工智能“空中客车”?

人工智能是“智能+”时代的新“电能”。从1732年富兰克林首次发现了电的存在,到爱迪生又不断试验发明了电灯进而于1882年建立了人类第一个电厂,这150年间人们不断怀疑“电”是魔法和神秘力量的产物,由此而经历了不理解、回避、拒绝和恐惧的初级电力时代。“同样的情况正发生今天人们对人工智能的认知上,”IBM云与认知软件高级副总裁Arvind Kirshna在2019美国Think大会上如是表示,“人工智能不是‘魔法’,人工智能就像‘电’一样存在,而且在彻底改变商业。”

PWC普华永道的预测是,到2030年,人工智能将带来全球GDP增长近16万亿美元。而在人类的信息技术历史上,还没有哪种技术堪比人工智能的这种超巨型经济影响力。而在另一方面,我们今天仍处于初级人工智能时代。根据Gartner和信通院联合编制的2018世界人工智能产业发展蓝皮书发布,人工智能仍处于早期采用阶段,仅有4%的被调研企业已经投资并部署了AI技术

2019年5月21日,以“‘智能+’时代,我们与科技的对话”为主题的2019 IBM中国论坛,诠释了人类在人工智能初级时代要做的事情——通过与科技的对话,打开想像的空间。在2019年2月,IBM研究院还牵头成立了AI硬件中心,通过与科研和产业界的协作,要在未来十年提升AI性能效率千倍,加速人工智能“空中客车”到来的进程。

AI硬件加速创新:人工智能“空中客车”

众所周知,以神经网络为代表的人工智能计算对于芯片等计算硬件体系带来了极大的挑战,现有的基于冯·诺伊曼架构的计算硬件体系已经遭遇瓶颈,而摩尔定律也在失效。面向未来的“智能+”时代,量子计算是长期趋势和解决方案。IBM已经在量子计算方面投入了大量研究,并在2019美国CES展以及IBM Think大会上,展示了目前全球唯一一台脱离实验室环境运行的量子计算机“IBM Q System One”。

不过,当前离量子计算机商用和量产还较远,更现实的解决方案是改造现有的芯片硬件架构,以满足当下的人工智能计算需求。

2019年2月成立的IBM研究院AI硬件中心(IBM Research AI Hardware Center),就是为了应对未来十年的智能计算需求而投资的研究机构。该机构为开放式研究方式,将与其它研究机构和产业公司一起对话及合作,共同加速面向AI优化的硬件创新。其中,商业和产业合作伙伴有Samsung、Mellanox Technologies、Synopsys、Applied Materials、Tokyo Electron Limited(TEL)等。

经典的冯·诺伊曼架构在应对人工智能计算时,其主要挑战在于处理器/存储器带宽瓶颈,因为人工智能计算属于大规模并行计算,而这个计算模式并不是当前CPU的设计初衷。虽然今天的AI系统已经在高带宽CPU和GPU、专门的AI加速器、高性能网络设备等方面取得了进展,但要保持沿着这个方向的跃进,仍然需要投入大量的研究。IBM研究院AI硬件中心的目标是将当前的人工智能系统性能效率在未来十年提升千倍。为了达到这个目标,IBM与众多合作伙伴一起,推进从芯片、材料、架构等硬件到支持AI计算任务软件的创新。

(IBM研究院AI硬件中心正在开发未来10年提升AI计算性能效率千倍的路线图)

IBM研究院AI硬件中心主要推动IBM和生态伙伴们,在IBM的数字AI内核(Digital AI Cores)以及基于内存计算的模拟AI内核(Analog AI Cores)等技术基础上,展开“千里大跃进”。IBM认为,基于现有技术的深度学习计算能在2020年左右达到1000GFlops/W的计算能力;基于数字AI内核技术的深度学习计算能在2021年左右达到接近1万GFlops/W的计算能力,也就是十倍能力的提升;而基于模拟AI内核技术的深度学习计算能在2023年左右达到接近5万GFlops/W的计算能力,结合了优化的材料后则能在2025年左右推进深度学习计算达到10万GFlops/W的计算能力,并进一步在2030年左右达到100万GFlops/W的计算能力,也就是今天计算能力的千倍提升。

IBM研究院半导体及AI硬件副总裁Mukesh Khare就此撰文指出:硬件在狭义AI技术的成熟过程中扮演着基础性角色,而IBM推动的下一波硬件创新将起到更加重要的作用。IBM研究院将聚集于多年期的技术路线图,以为业界开发和交付专用加速内核、芯片架构等,大幅提升AI系统的性能。虽然当前AI系统的千倍性能提升还不能达到“登月”的效果,但足以让人工智能“空中客车”的到来成为可能。

AI软件加速创新:扩大数字化转型范围

如果说量子计算是“智能+”的长期趋势、AI硬件创新是“智能+”的中期趋势,那么AI软件创新就是当下的“智能+”趋势。正如Gartner研究副总裁John-David Lovelock在对2019全球IT支出预测时所表示的,虽然人工智能正在对IT支出产生重大影响,但它的作用经常被误解——人工智能并不是一种产品,而是一套技术或一门计算机工程学科。正因如此,人工智能被嵌入到许多现有的产品和服务中,并成为每个行业新研发计划的核心。

AI软件创新,就是在现有的硬件基础上,让AI能力可以具象到具体的产品、服务和企业中。2019年4月,IBM在大中华区发布2019《认知型企业:发挥人工智能优势,全面重塑企业——七大成功要素》报告指出,企业需要充分利用呈指数级发展的技术,“由内而外”地展开全面的数字化重塑,打造新型的商业模式,这就是“认知型企业”。认知型企业能够自动在企业外部收集、了解客户需求,再充分发挥人工智能的优势,从内部的平台、架构、数据、人才等关键的企业内核任务作出反应和决策,更好应对复杂的客户需求和多变的竞争环境。

“认知型企业”对于数字化转型来说非常重要,也是数字化转型的第二篇章,即数字化重塑。而建立“认知型企业”,扩大数字化转型进入到数字化重塑,就需要把AI嵌入到企业的方方面面,这就需要把AI软件进行基础设施化和平台化。实际上,在过去几年的AI商业大发展初期阶段,最大的问题就在于碎片化的AI软件和服务。仅在中国市场,截止到2018年5月,就有超过4000家人工智能企业,由此而带来了大量碎片化的AI软件与服务,而企业在选择这些AI软件与服务时往往无所适从。

多人工智能环境是继多云环境后,企业数字化转型与数字化重塑所面临的多种数字技术集成难题,也是扩展人工智能应用的重大挑战。2018年10月,IBM推出了AI OpenScale,面向多云环境支持多种开源AI算法,包括谷歌TensorFlow、微软AzureML、SparkML、Keras、Seldon以及AWS的SageMaker等,帮助企业统一集成管理各类AI算法框架和软件。而支持AI OpenScale的IBM Cloud Private私有云软件则基于当下最流行的Kubernetes,天然可跨多种云及IT环境,特别是IBM Power System等专为企业级工作负载而设计的服务器系统。在此基础上,IBM Watson能够运行在任意的IT环境中。而在扩展AI方面,IBM还在用AI管理AI,例如IBM Watson Studio就用AI自动选择适用的AI算法等。

在AI平台以及AI的基础设施之外,IBM还在将Watson的能力扩散到各种商业应用软件中。嵌入在Watson Campaign Automation SaaS解决方案中的IBM Watson Assistant for Marketing功能,可以帮助营销人员通过 Watson 将繁忙的营销工作转换为简单的对话;定制的Watson工具集,可帮助工业企业使用视觉和听觉检测功能,显著降低对产品检测资源的需求;IBM推出的AI functionality for HR 能够分析背景各异的现有优秀员工的背景信息,帮助招聘经理甄选合格申请人;Watson Decision Platform for Agriculture农业智能平台可收集多个来源的数据,如接入天气信息、连接物联网的拖拉机和灌溉装备以及卫星图像等,并通过简单易用的 APP 提供单一的总体预测性农场视图等等。

AI信任与人才:可持续发展的智能+未来

在“智能+”时代的当下及中长期趋势之外,AI信任与AI人才是一个可持续“智能+”未来的基石。多项人工智能相关调研显示,AI人才短缺以及缺乏对AI的信任,是企业难以采用和扩展使用人工智能的重要前提。正如从发现电的存在到人类第一个电厂之间的150年,当时的人们同样也缺乏相关的电力电能等人才以及对于电的信任。不过好在现在的人类已经有了应对陌生新技术的经验,以及IBM这样大规模商业推广新技术的企业。

在建立人们对AI信任方面,IBM认为一个可信任的AI系统,需要遵循几个基础原则:公平性(Fairness),即AI系统应该采用不带偏见的数据集和模型,从而避免对于特定群体的不公平;健壮性(Robustness),即AI系统应该安全和可靠,不会被篡改,也不会受被“污染”的训练数据集影响;可解释性(Explainability),即AI系统所提供的决策或建议,应该能够被用户和开发者所理解;可追踪(Lineage),即AI系统的开发、部署、维护等可被追踪,能够在生命周期范围内被审计等。

IBM不仅提出了开发新型人工智能技术的信任原则和透明度原则,而且还将这些原则付诸实践。IBM推出了一项旨在提高人工智能透明度的技术,这是一项基于IBM云计算的软件服务,能够在人工智能进行决策时自动检测偏向性并能够对决策过程进行解释,从而帮助各行各业的组织管理人工智能系统。IBM服务部门也将与企业一同合作,帮助他们更好地利用这一软件服务。

作为Partnership on AI的创始成员之一,IBM长期以来一直关注人工智能的安全、透明、可信赖以及合理发展。IBM研究院还向开源社区提供AI Fairness 360工具包,其中包括一系列新型算法、代码和教程的资源库,可为专业学者、研究者和数据专家提供在构建和部署机器学习模型时整合偏向性检测功能的工具和知识。

当然,IBM也在通过技术手段,建立人们对AI的信任。2018年的IBM人工智能辩论系统Project Debater,就是这样一种人与科技的对话,通过人类辩手和人工智能辩手Project Debater之间的辩论较量,让人们更好的理解人工智能的能力和优缺点。辩论本身不是因为冲突或竞争,而是更有建设性的讨论,辩论丰富了决策制定的过程,帮助人们权衡新想法、新理念的利弊。辩论也是为了理解和学习彼此的观点,因此Project Debater就通过人机辩论这种创新对话的方式,建立人们对于人工智能的信任。

而在AI人才培养方面,在2019美国IBM Think大会上,IBM宣布推出了AI Learning and Certification Program,包括到IBM研究院场所的现场培训和研讨、在线培训课程以及IBM提供的AI认证,特色课程有AI模型偏见检验检测等。也就是说,IBM通过培训把人才培养以及对AI的信任连接起来,以确保可持续的智能+未来。

IBM董事长、总裁兼首席执行官Ginni Rometty曾表示 :“IBM致力于引领改变世界运作方式的技术——并解决许多人尚未想到的问题。”在2018年,IBM共获得了9100项专利,其中一半的专利涉及人工智能、区块链、量子计算、安全和云技术。2018年是IBM 连续第 26 年成为专利领导者,这让IBM超过了总共110,000项专利的里程碑。

正是在雄厚的技术发明创造能力之上,IBM在全球范围内推进人工智能从“电能”到“电厂”再到广泛应用以及更进一步发明“空中客车”的进程。当AI性能效率提升千倍时,“智能+”的大时代就真正到来了。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IBM
    IBM
    +关注

    关注

    3

    文章

    1853

    浏览量

    76782
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261513

原文标题:IBM对话智能+未来:十年提升AI性能效率千倍?

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片到AGI芯片

    优化计算资源并有效地适应任务的复杂性。 显著特征: MoE 模型的一个显著特征是在管理大型数据集方面的灵活性较高,它能够在计算效率小幅降低的情况下,将模型容量扩大上千倍。稀疏门控混合专
    发表于 09-18 15:31

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    的框架小 10 ,速度也快 10 ,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍这对开发人员意味着什么,以及使
    发表于 08-31 20:54

    AI 芯片浪潮下,职场晋升新契机?

    方向,就明确涵盖了人工智能芯片的研发、部署与优化技术岗位 。如果你从事 GPU 相关研发工作,在申报职称时,就需着重突出在图形处理加速、大规模并行计算等方面的成果,因为 GPU 的高并行结构及强大浮点
    发表于 08-19 08:58

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 ,速度也快10 ,甚至可以在最
    发表于 07-31 11:38

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能
    发表于 07-14 11:23

    AI芯片:加速人工智能计算的专用硬件引擎

    人工智能AI)的快速发展离不开高性能计算硬件的支持,而传统CPU由于架构限制,难以高效处理AI任务中的大规模并行
    的头像 发表于 07-09 15:59 896次阅读

    CES Asia 2025蓄势待发,聚焦低空经济与AI,引领未来产业新变革

    可能性。智能无人机在物流配送、巡检监测等领域的应用愈发成熟,大大提高了工作效率和精准度。低空经济的发展,不仅带动了相关技术的进步,还创造了新的就业机会和经济增长点。 人工智能领域同样发展迅猛,深度学习
    发表于 07-09 10:29

    IBM推动AI智能体应用加速普及

    受访企业高管表示,预计 2025人工智能支持的工作流程将激增 8人工智能体将提高流程效率、降低成本并改变工作流程。
    的头像 发表于 06-28 10:41 854次阅读

    开售RK3576 高性能人工智能主板

    ,HDMI-4K 输出,支 持千兆以太网,WiFi,USB 扩展/重力感应/RS232/RS485/IO 扩展/I2C 扩展/MIPI 摄像头/红外遥控 器等功能,丰富的接口,一个全新八核拥有超强性能人工智能
    发表于 04-23 10:55

    在树莓派上设置 DeepSeek R1:2025 离线人工智能未来

    概述《在树莓派上设置DeepSeekR1:2025离线人工智能未来》是一份前瞻性技术指南,聚焦中国AI初创公司DeepSeek于2023
    的头像 发表于 03-25 09:20 1075次阅读
    在树莓派上设置 DeepSeek R1:2025 <b class='flag-5'>年</b>离线<b class='flag-5'>人工智能</b>的<b class='flag-5'>未来</b>

    Banana Pi 发布 BPI-AI2N &amp; BPI-AI2N Carrier,助力 AI 计算与嵌入式开发

    存储设计,轻松应对复杂AI模型与实时推理。其坚固耐用的工业级品质与超低成本,不仅适应严苛环境的应用,更为工程师提供了极致灵活的开发体验,堪称推动开源生态与人工智能未来的标杆之选。” 瑞萨系统解决方案部
    发表于 03-19 17:54

    人工智能对智慧园区的提升和帮助

    随着人工智能AI)技术的快速发展,其在智慧园区中的应用正逐步改变传统园区的管理模式和服务方式。 智慧园区 通过整合物联网、大数据、云计算等技术,实现了资源的高效配置和管理的智能化。而
    的头像 发表于 03-13 14:39 739次阅读

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    ,涵盖了通信、人工智能、工业自动化、视频处理等多个领域: • 通信行业:用于基站、网络边缘计算等场景,处理复杂的物理协议和逻辑控制。 • 人工智能:FPGA的并行处理能力使其在高性能
    发表于 03-03 11:21