0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

超级电容器在能量微观采集中的应用

电子设计 来源:郭婷 作者:电子设计 2019-03-07 08:22 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

能量微观采集应用(如无线传感器节点)需要定期突发功率,远远超出大多数环境源的稳定状态。在这方面,超级电容器提供非常适合能量收集环境的性能特征。通过将超级电容器与适当的电源和充电管理电路相结合,并使用包括凌力尔特公司,Maxim Integrated和德州仪器在内的制造商的专用器件,工程师可以在具有苛刻峰值功率要求的应用中利用微采集技术。

电化学双层电容器(EDLC)或超级电容器能够在几秒钟内释放数十甚至数百毫安的电流。例如,对于无线传感器节点应用,该功率输出完全在无线通信突发的峰值需求范围内。超级电容器的有效充放电循环使其非常适合无线传感器节点等突发型应用。同样,它们有效的充电/放电特性使它们非常适合微观收割应用的特殊需求,这些应用必须在长时间没有环境能量耗尽所有车载电荷存储设备后定期“冷启动”。这里,在微收获电路首先对用于为自举过程的后续阶段供电的自举超级电容器充电之后,顺序地重新激励完整的应用电路。

典型的微观收割应用使用超级电容器作为唯一的存储设备,或者作为峰值或冷启动要求的补充存储(图1)。对于负载管理,需要DC/DC转换器来维持负载的稳定电源电压,因为超级电容器的电压输出与超级电容器上的电荷成线性比例。工程师通常会使用具有低压差的降压 - 升压转换器,以便在负载下电荷水平下降时从超级电容中提取最大功率。

超级电容器在能量微观采集中的应用

图1:在典型的微采集应用中,诸如薄膜电池的存储设备通常提供一致的电源。超级电容器通过为峰值功率需求提供现成能源来增强这些设计。 (德州仪器公司提供。)

在充电阶段,工程师需要重新考虑传统方法。例如,用于防止太阳能应用中的反向电流的二极管将使超级电容器充电阈值升高二极管压降量。类似地,使用电压调节器可以消除二极管压降并提供较低的充电阈值,但是当超级电容器接近耗尽时会出现问题,此时它会显示为短路。结果,调节器将电流降低到相应的低水平 - 并且显着增加超级电容器的充电时间。在使用多个超级电容器的系统中,这些因素变得更加复杂,其中需要电荷平衡以确保可靠的充电。同时,这些看似简单的充电管理方法实际上使维持太阳能电池,压电或其他能量源换能器所需的最大功率点跟踪(MPPT)方法复杂化,其动态变化的IV点对应于换能器的最大功率输出。

可用设备

工程师可以选择专门设计的各种设备,以管理微观收获应用中超级电容器充电管理的独特要求。例如,凌力尔特公司将其LTC3588作为完整的能量收集电源提供,为超级电容器等大型存储设备充电提供功能(图2)。除其他功能外,LTC3588还将降压转换器与交流电源(如压电传感器)所需的全波桥式整流器相结合,但也可以收集纯直流电源。该器件具有欠压锁定(UVLO)模式,允许电荷累积在存储电容上,直到降压转换器需要开启以为负载供电。

超级电容器在能量微观采集中的应用

图2:工程师可以使用Linear LTC3588实现完整的超级电容器电源,由环境太阳能供电,只需几个附加组件。 (由Linear Technology提供。)

在运行中,当Vin上升到UVLO上升阈值以上时,LTC3588开启其降压转换器。降压转换器然后将电荷从输入电容传输到输出电容。相反,当输入电容电压低于UVLO下降阈值时,降压转换器被禁用。由于在UVLO中禁用降压转换器,LTC3588的功耗约为450 nA,因此LTC3588可支持从极低功率源采集能量。通过这种方法,设计可以将收集的能量存储在输入电容器或输出电容器上。虽然电流仅限于降压转换器在输入电容上的电源供应能力,但工程师可以使用更大的输出电容来支持更大的电流。

德州仪器(TI)BQ25504 IC采用升压转换器,旨在确保能量输入源的能量收集低至80 mV。 BQ25504使用脉冲频率调制(PFM),将输入电压VIN_DC调节到接近所需的参考电压,该电压通过每16秒采样一次能量采集器的开路电压预设值来设定。工程师可以使用电阻器将此比率设置为适当的值 - 对于太阳能收集器通常为0.8。因为太阳能电池的最大功率点大约是其开路电压的80%,所以这种机制提供了一种简单但准确的MPPT形式。

在操作中,器件将采样的参考电压保持在VREF_SAMP上。当输入电压超过VREF_SAMP时,器件通过其VSTOR引脚将电荷从输入传输到负载,从而保持输入电压调节(和最大功率点)。工程师可以将超级电容器连接到器件的VBAT引脚,并依靠BQ25504的内部电路来优化超级电容器的充电。

Maxim MAX17710同样依赖于内部升压转换器,允许从低至0.75 V的输入源对超级电容器充电.LDO线性稳压器独立管理负载的输出电压,可选择低功耗模式,旨在最大限度地提高存储容量。超级电容器或其他存储设备。在工作时,只要输入源电压(引脚CHG)超过BATT上的电压,MAX17710就会将电流直接传递给超级电容(引脚BATT) - 无需器件进一步干预。当CHG电压超过CHG使能阈值(VCE)时,器件会限制充电电压以防止过充电,并使LDO能够开始为应用负载供电。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 超级电容器
    +关注

    关注

    19

    文章

    535

    浏览量

    30128
  • 转换器
    +关注

    关注

    27

    文章

    9365

    浏览量

    155127
  • 德州仪器
    +关注

    关注

    123

    文章

    1844

    浏览量

    144558
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    超级电容器性能指标有哪些?

    超级电容器性能由电容、电压、能量密度等指标决定,适合短时高功率应用。
    的头像 发表于 12-07 09:26 465次阅读
    <b class='flag-5'>超级</b><b class='flag-5'>电容器</b>性能指标有哪些?

    超级电容器与电池的区别与联系

    超级电容器与电池各具优势,超快充放电适合高功率场景,高能量密度适合长期供电,互补共促新能源发展。
    的头像 发表于 11-11 09:14 392次阅读
    <b class='flag-5'>超级</b><b class='flag-5'>电容器</b>与电池的区别与联系

    超级电容器与传统电容器的区别

    传统电容器超级电容器储能原理、性能参数及应用场景上有显著差异,前者侧重能量密度,后者强调充放电速度与功率密度。
    的头像 发表于 11-09 09:33 924次阅读
    <b class='flag-5'>超级</b><b class='flag-5'>电容器</b>与传统<b class='flag-5'>电容器</b>的区别

    多层陶瓷电容器超级电容器的区别

    文章对比了多层陶瓷电容器(MLCC)和超级电容器,强调其结构、能量管理及应用上的差异,前者快、薄,后者强、大。
    的头像 发表于 10-26 09:18 804次阅读
    多层陶瓷<b class='flag-5'>电容器</b>与<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>的区别

    双电层超级电容器工作原理详解

    双电层超级电容器通过纳米界面效应实现高能量密度和快速充放电,利用双电层与赝电容协同提升性能。
    的头像 发表于 09-19 09:22 1094次阅读
    双电层<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>工作原理详解

    锂电池和超级电容器哪个小效果好?

    锂电池与超级电容器各具优势:锂电池能量密度高,适合长期使用;超级电容器功率密度高,适合短时高功率需求,但成本较高。
    的头像 发表于 08-25 14:28 980次阅读
    锂电池和<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>哪个小效果好?

    多孔碳材料超级电容器

    多孔碳材料通过微观结构优化提升超级电容器性能,结合创新制备工艺和器件设计,推动能源存储技术发展,但仍面临产业化挑战。
    的头像 发表于 08-04 09:18 619次阅读
    多孔碳材料<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>

    超级电容器能量密度测试方法

    本文介绍了超级电容器能量密度测试方法,包括原理、步骤及影响因素。
    的头像 发表于 07-19 09:24 816次阅读
    <b class='flag-5'>超级</b><b class='flag-5'>电容器</b><b class='flag-5'>能量</b>密度测试方法

    固态电池和超级电容器的区别

    固态电池与超级电容器,通过离子搬运工到电荷仓库的物理博弈,固态电池实现单位时间内运送的乘客数量和续航里程提升,而超级电容器则追求瞬时吞吐效率。
    的头像 发表于 07-12 09:26 1075次阅读
    固态电池和<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>的区别

    超级电容器的优缺点

    超级电容器是一种介于传统电容器和电池之间的独特储能装置,其核心优势是电容量高、循环寿命长、充电速度极快。但其局限性在于能量密度低,存储相同
    的头像 发表于 06-26 10:13 1621次阅读
    <b class='flag-5'>超级</b><b class='flag-5'>电容器</b>的优缺点

    新型电力系统:超级电容器

    、安全可靠等优点。它所存储的能量比传统物理电容器大一个数量级以上,容量可达到法拉级甚至数千法拉,同时保持了传统物理电容器释放能量速度快的特点。超级
    的头像 发表于 05-16 08:43 631次阅读
    新型电力系统:<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>

    超级电容器均压电路状况与展望

    引言 超级电容器的额定电压很低(不到 3V),应用中需要大量的串联。由于应用中常需要大电流充、放电,因此串联中的各个单体电容器上电压是否一致是至关重要的。影响
    发表于 03-24 15:13

    超级电容器原理、分类及应用事项

    超级电容器能量储存领域的一次革命,将在混合动力汽车、RAM、消费电子等领域取代传统蓄电池,有效地节约能源并提高电池的使用寿命。超级电容器
    的头像 发表于 02-26 13:35 1774次阅读
    <b class='flag-5'>超级</b><b class='flag-5'>电容器</b>原理、分类及应用事项

    新能源汽车超级电容器综述

    电层,或借助电极表面快速的氧化还原反应所产生的法拉第准电容来实现电荷和能量的储存。超级电容器的类型如图超级
    的头像 发表于 02-26 13:30 1268次阅读
    新能源汽车<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>综述

    新能源汽车超级电容器?

    层,或借助电极表面快速的氧化还原反应所产生的法拉第准电容来实现电荷和能量的储存。超级电容器的类型如图所示超级
    的头像 发表于 02-26 10:41 1885次阅读
    新能源汽车<b class='flag-5'>超级</b><b class='flag-5'>电容器</b>?