0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习竞争幕后其实是对于数据新颖度和广泛度的竞争

MqC7_CAAI_1981 来源:cc 2019-01-10 15:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工智能的三大发展要素已经是老生常谈了。算法、算力和数据对机器学习的重要性和声望不亚于“谦哥”的喝酒、烫头和抽烟。

那些热衷竞争实施机器学习的公司现在惊讶地发现,其实,实施一些算法使机器变得对某一数据或问题更加智能并不困难。毕竟,这年头“即插即用”又很稳健的算法编程解决方案简直“烂大街了”。例如,从开源机器学习框架谷歌TensorFlow,到微软Azure Machine Learning以及亚马逊SageMaker,应有尽有。

所以,数据已逐渐成为了机器学习竞争中最关键的区分点。一个原因是高质量数据并不常见;另一原因是数据尚未商品化,公司企业之间存在着信息不对称。

希望借助AI一臂之力的企业需要寻求外部数据源,甚至这样的数据甚至可能需要他们自己创建。

有用的数据:有价值、又很稀少

数据逐渐变成竞争中的区分点是因为许多公司根本没有他们需要的数据。尽管几十年来,公司都在使用通用的会计准则这样的系统化方法来评估自己,但是这种评估方法一直关注于实体资产与金融资产,也就是实物和钱。2013年甚至给资产定价理论颁了一个诺贝尔奖,强化了已有的对实体或金融资产重要性的认知。

但是,今天最有价值的那些公司贸易对象是软件或网络,而不仅仅是实体或金融资产。在过去的40年内,资产类型的重心有了很大的变化:1975年,83%的有形资产占整个市场绝大部分份额;而2015年时市场中84%的资产是无形资产。今天的公司巨头们不再生产咖啡壶也不再售卖洗衣机,他们转而提供应用程序,软件等等。这样的转变造成了会计记账的对象和实际产生价值的对象极其不匹配。

结果就是有用数据的缺少已经成为了一个问题。市面价值与账面价值的差别越来越大。公司们正在试图利用机器学习辅助重要的商业决策来改善这一差别。有时,机器学习甚至会取代一些昂贵的咨询顾问们,而最后他们经常会意识到算法所需的数据压根不存在。所以实际上,那些闪瞎人眼的先进AI系统最后依旧只是在同样老旧的数据上试图实施新技术。

和人类一样,除非有人教,机器学习系统并不会精通任何领域。不过比起人类,机器会需要更多的信息来进行学习,并且它们确实比人类读取数据的速度更快。因此,表面上公司间会互相竞争谁拥有更好的机器学习程序员以及谁先启动AI项目,在幕后其实是对于数据新颖度和广泛度的竞争。

比如说在金融领域,可供选择的数据来源远远超过了传统证券交易报告以及投资者展示等。数据还可以来源于社交网络情感分析或者获批专利数量等。

这些数据源的重要性主要基于两点原因。首先,传统数据局限于传统资产,在当今无形资产当道的时代,覆盖面上远远不够。第二,并没有任何必要在市场上所有人都在分析的数据上使用机器学习方法。所有对此感兴趣的人都早已经尝试过分析产业趋势、利润率、增长率、息税前利润、资产周转率以及资产回报率和其它上千个常见的变量与股东回报率之间的相关性。

在所有人都在分析的数据上试图发现相关性并不会帮助公司取胜。相反,希望使用AI取胜的公司需要寻找新数据集之间的联系,因此他们可能必须自己创建那些新数据集来评估无形资产。

谨慎思考:你想知道什么?

创建数据比仅仅把销售点与顾客信息两个表聚合到一起然后丢进数据库复杂得多。大多数企业错误地相信通过这样一种权宜的方法能够预测或区分出他们关心的信息:把所有能找到的数据都大费周章地聚合到一起然后指望能够找到一丝希望之光。

尽管机器学习有时会突然发现某些从未有人意识到的事物从而使所有人都大吃一惊,但它并不能够持续稳定提供这样的洞察。这并不意味着这项工具很垃圾,这意味着我们需要更明智地使用它。但说起来容易做起来难:比如,在我们研究外部数据市场时,我们发现大多数新数据提供者依旧在关注实体与金融资产。

许多企业遗漏的一步是提出一项真正重要的假设。机器学习真正体现优越性之处在于,它们能够通过采用人类已经拥有的见解,这可以来自于经验法则、广泛认知或者几乎完全不被理解的相关性,来建设一种速度更快、更易于理解、更易于扩展且更低错误率的方法。

为了这样使用机器学习方法,不应向系统塞进任何你能找到的数据。你仅仅输入被谨慎思考过的一组信息,希望它能够学习并拓展,得到比人类掌握的更多的信息。

有意义的机器学习来自于不同的数据

以下是为希望搭建有影响力、有价值的机器学习应用的公司提出的三点建议:

1.成功的AI在于与众不同的数据。在你的竞争对手都已经掌握的数据上你是得不出什么新颖信息的。审视企业内部,找出只有你们知道并理解的信息并以此创建一个独特的数据集。机器学习算法确实需要大量的数据支持,但这并不意味着模型需要考虑大量变量。你应当把关注点放在企业已经具有独特之处的数据上。

2.有意义的数据比全面的数据好。你可能就某问题上拥有大量详尽数据,但它们可能压根没什么用。如果你的公司根本不会在决策过程中随时使用这些信息,那这样的数据八成对机器学习也没有什么价值。专业的机器学习工程师会询问许多困难的问题来找出什么才是真正重要的领域,以及那些领域将如何对该应用程序输出结果产生影响。如果这些问题对你太难了,那么你并没有为得到实际价值而仔细思考。

3.应当从你已知的信息出发。最善于利用机器学习的公司会从一个独特的视角出发,来找到与他们重要决策最为相关的因素。这将会指导他们去收集何种数据以及使用何种技术。就基于你们团队已经拥有的一部分知识之上进行拓展这个问题来着手是比较简单的,这也将为你企业创造更多价值。

很明显这个时代已经是“软件吃掉了整个世界”了(这个形容来源于软件工程师Marc Andreessen)。但它们依然很饥饿!软件们需要一份包含崭新数据与科技的食谱来持续创造价值。

没有人希望落后于这样的洞察、机器与外部数据的转变。那么,请从内部审视企业开始,去发掘你独特的见解以及你可以而且应该得到的有价值的外部数据来源。通过这些步骤,你才能够发现保持企业竞争力的相关洞见。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261519
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136233

原文标题:业界 | 机器学习竞争其实是一场数据上的竞争

文章出处:【微信号:CAAI-1981,微信公众号:中国人工智能学会】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    飞凌嵌入式ElfBoard-文件I/O的了解探究之竞争冒险

    和修改共享资源,这可能导致数据不一致或程序行为异常,所以需要注意在多进程环境中可能发生的竞争冒险问题。竞争冒险不但存在于Linux应用层、也存在于Linux内核驱动层,主要是由于并发环境下的执行顺序
    发表于 11-26 15:38

    UART接口数据线接收和发送数据

    寄存器其实是UART发送FIFO(TX-FIFO)的映像,TX-FIFO的深度为8个表项,每个表项存储1字节的数据。FIFO按照先入先出的方式组织,软件可以通过写UART_TXDATA寄存器数据压入
    发表于 10-29 07:37

    海格通信荣获2025年软件和信息技术服务竞争力百强企业

    2025年10月15日,中国电子信息行业联合会第27届中国国际软件博览会上发布了“2025年软件和信息技术服务竞争力百强企业”榜单。海格通信(股票代码:002465)凭借良好的经营态势、持续的技术创新实力等综合表现再次入选。
    的头像 发表于 10-16 17:41 685次阅读

    中软国际入选2025年软件和信息技术服务竞争力百强企业

    10月15日,以"开源构筑新生态·软件智造新未来"为主题的第二十七届中国国际软件博览会在郑州隆重开幕。展会期间,中国电子信息行业联合会正式发布2025年软件和信息技术服务竞争
    的头像 发表于 10-16 11:10 882次阅读

    欧菲光荣获2025年电子信息竞争力百强企业

    9月5日,中国电子信息行业联合会发布了《2025年电子信息企业竞争力报告》及前百家企业名单。凭借卓越的技术创新实力、稳健的发展韧性及持续的行业贡献,欧菲光集团股份有限公司位列榜单第55位,较去年攀升了21位,充分彰显了公司强劲的发展势头。
    的头像 发表于 09-11 18:10 3201次阅读

    2025年中国工业机器人产业区域竞争梯队分析(图)

    中国工业机器人区域竞争分三大梯队:第一梯队长三角地区、珠三角地区,凭借全产业链集群、技术人才密集、应用场景牵引及政策资本协同,领跑“产业规模与创新驱动”;第二梯队京津冀地区、中西部地区,依托科研资源
    的头像 发表于 08-26 17:48 745次阅读
    2025年中国工业<b class='flag-5'>机器</b>人产业区域<b class='flag-5'>竞争</b>梯队分析(图)

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    中软国际荣获华为云云商店2024年热销奖与2024最具竞争力奖

    4月10日-11日,以“聚力共创,加速行业智能跃迁”为主题的华为云生态大会2025在安徽芜湖成功召开。中软国际作为华为云深度合作伙伴受邀参加本次大会,并凭借鸿蒙专家服务产品的卓越品质与过硬技术实力,荣获华为云云商店「2024年热销奖」与「2024最具竞争力奖」。
    的头像 发表于 04-12 13:50 827次阅读

    RK3568驱动指南|第三篇-并发与竞争-第19章 并发与竞争实验

    RK3568驱动指南|第三篇-并发与竞争-第19章 并发与竞争实验
    的头像 发表于 02-24 16:26 849次阅读
    RK3568驱动指南|第三篇-并发与<b class='flag-5'>竞争</b>-第19章 并发与<b class='flag-5'>竞争</b>实验

    什么是平整、平面、平行、共面、翘曲度

    陶瓷基板的不同形位状态 陶瓷基板平不平,口说无凭。 衡量平不平的指标有不少,在工程实践中,平整、平面、平行、共面和翘曲度是常见的几何公差指标。 由于名称接近,概念相似,平整
    的头像 发表于 02-08 09:34 4.1w次阅读
    什么是平整<b class='flag-5'>度</b>、平面<b class='flag-5'>度</b>、平行<b class='flag-5'>度</b>、共面<b class='flag-5'>度</b>、翘曲度

    LG Display 2024年财务数据公布

    26.6135万亿韩元的营收,与上一年相比增长了24.8%。这一增长幅度表明,尽管全球经济形势复杂多变,但LG Display在显示面板领域依然保持了强劲的市场竞争力。 然而,在营收增长的同时,LG Display也面临着营业亏损的挑战。
    的头像 发表于 01-17 14:17 877次阅读

    全长直线和米直线如何测量?

    (或其垂面)的倾斜角,通过数据处理求出直线误差值。这种方法适用于大、中型零件垂直截面内的直线误差测量。 二、米直线的测量方法 米直线
    发表于 01-16 14:19

    不锈钢管在线直线测量仪 平直、弯曲度检测!

    的位置数据计算测量点在坐标系中的实际偏差,无论钢管的弯曲方向如何,都可测得真实的直线尺寸。 直线法原理:一般由3台测量仪组合而成,前后两台测量仪测量的信息用以拟合成一条直线,中间的测量仪测量的数值与该条
    发表于 01-16 14:16

    高工年会 守正创新开新局 助力国产机器竞争

    2024年,对于中国工业机器人行业,是考验的一年。即使在出海、人形机器人、新能源汽车等各方面的助推下,依然卷到极致,日子过得苦不堪言。据高工机器人产业研究所(GGII)调研
    的头像 发表于 12-25 15:19 625次阅读
    高工年会 守正创新开新局 助力国产<b class='flag-5'>机器</b>人<b class='flag-5'>竞争</b>力

    千方科技获评2024年软件和信息技术服务竞争力百强企业

    近期,中国电子信息行业联合会发布《2024年软件和信息技术服务竞争力百强企业》(即“中国软件百强企业”),千方科技凭借在信息技术领域的突出表现与创新能力入围榜单。共同入榜的还有阿里、百、海尔等优秀企业。
    的头像 发表于 12-11 16:09 1038次阅读