0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

当使用传统计算架构时功耗仍是一个巨大挑战

半导体动态 来源:工程师吴畏 作者:GLOBALFOUNDRIES 2018-12-22 16:03 次阅读

随着传统市场走向下坡路和摩尔定律的逐渐失效,半导体行业正在不断革新,力求了解人工智能自动驾驶汽车、物联网等新市场的需求。

而其中最奇特的也许当属人工智能,因为它的计算范式与传统的“处理器-内存”方法有着明显差异。在近期于旧金山举办的国际电子器件大会上,法国研究员Damien Querlioz在谈及“神经形态计算的新型器件技术”时说道,“长期以来,模式识别和认知任务都是计算机的弱点,比如识别和解读图像、理解口语、自动翻译等。”

大约从2012年起,训练和推理阶段的人工智能技术开始加速发展,但当使用传统计算架构时,功耗仍是一个巨大挑战。

Querlioz是法国国家实验室CNRS的一名研究员,他举了一个活生生的例子:2016年Google的AlphaGo与围棋世界冠军李世石之间的著名围棋大战。李世石的大脑在比赛中消耗了大约20瓦,而AlphaGo估计需要超过250,000瓦才能使其CPUGPU保持运转。

虽然从那以后Google和其他公司均在功耗方面做出了改进,但越来越多的工作开始侧重于为神经形态计算技术设计耗电更少的新器件。

Ted Letavic是格芯的高级战略营销人员,他表示,回想人工智能的各个阶段,从改进传统计算技术,到设计耗电更少的全新器件和架构,在整个过程中,先进高效的封装将发挥关键作用。

Letavic称,“人工智能时代正在逐步到来,我们可以利用现有的技术,再加上衍生技术,通过DTCO(设计技术协同优化)进行全面优化,一直深入到位单元设计层面。”

格芯的技术人员正在努力降低14/12 nm FinFET平台的功耗并提升其性能,所采用的办法包括双功函数SRAM、更快且功耗更低的累加运算(MAC)元件、对SRAM的更高带宽访问等。基于FD-SOI的FDX处理器的功耗也将降低,尤其是在部署背栅偏置技术时。Letavic表示,设计师掌握了这些技术后,客户便可以“重新设计功耗包络更低的人工智能固有元件,甚至达到7 nm。”

除了这些DTCO改进以外,全球各地也在开展其他研发工作,希望实现基于相变存储器(PCM)、阻性RAM (ReRAM)、自选扭矩转换磁性RAM (STT-MRAM)和FeFET的嵌入式内存与内存中计算解决方案。

Querlioz在IEDM专题会议上提到,在IBM Almaden研究中心,由Jeff Welser领导开发的基于PCM的芯片已取得显著进展,而基于STT-MRAM和ReRAM的人工智能处理器也前景光明。Querlioz表示,“现在,我们极有可能成功为认知类型的任务和模式识别重新发明电子器件。”

Letavic称,降低功耗的道路还很长,对于推理处理而言尤其如此,而这正促使众多初创公司开发新的人工智能解决方案,格芯也与其中部分公司及长期合作伙伴AMD和IBM保持着密切合作关系。

Letavic认为,凭借对冯诺依曼计算模式的DTCO改进,我们只能发展到这一步。除了分类逻辑和内存,下一步是发展内存中计算和基于模拟的计算。此外,为计算行业服务了35年的指令集架构(ISA)将需要被新的软件堆栈和算法取代。他说道:“对于特定领域的计算,必须重新发明软件。IBM对软件堆栈有着深刻的见解。”

“各方都必须一同转向人工智能。格芯将与主要客户紧密合作,我们不能将算法与技术分开,”Letavic在谈及该系统技术协同优化(STCO)方面的紧密合作时说道,“随着我们迈入计算发展的第四个时代,STCO将是DTCO的自然延伸。我们将朝着特定领域的计算发展,共同迎接这一转变。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1776

    文章

    43845

    浏览量

    230600
  • 架构
    +关注

    关注

    1

    文章

    484

    浏览量

    25200
收藏 人收藏

    评论

    相关推荐

    【量子计算机重构未来 | 阅读体验】 跟我起漫步量子计算

    的干扰,保持量子比特的稳定性是巨大的技术难题。此外,量子编程和算法的发展也还处于初级阶段,需要更多的研究和探索。 尽管面临挑战,但量子计算
    发表于 03-13 19:28

    量子梦

    具有些特殊的性质,如叠加和纠缠,使得量子计算机能够在某些情况下比传统计算机更高效地解决某些问题。 量子计算机的
    发表于 03-13 18:18

    【量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    解释清楚,这里是行。比如传统计算遍历所有可能就可以知道所有可能结果中有价值的,但是量子计算同时的出所有可能是如何获得有价值或者有效结果
    发表于 03-11 12:50

    【RISC-V开放架构设计之道|阅读体验】+ 阅读深体验

    具体化后,将对RISC-V使用7评价指标进行衡量:成本,简洁,性能,架构和实现分离,提升空间,代码大小,易于编程/编译/链接。 举个简单的优越性对比说明,RISC-V是模块化的,区别于传统计算
    发表于 03-05 22:01

    边缘计算是一种什么运算架构

    边缘计算是一种分布式计算架构,它将数据处理和存储功能从传统的云端数据中心移至距离数据源更近的边缘设备或边缘节点上进行处理。这一架构的目标是通
    的头像 发表于 12-27 15:02 326次阅读

    揭秘GPU: 高端GPU架构设计的挑战

    计算领域,GPU(图形处理单元)一直是性能飞跃的代表。众所周知,高端GPU的设计充满了挑战。GPU的架构创新,为软件承接大模型训练和推理场景的人工智能计算提供了持续提升的硬件基础。G
    的头像 发表于 12-21 08:28 428次阅读
    揭秘GPU: 高端GPU<b class='flag-5'>架构</b>设计的<b class='flag-5'>挑战</b>

    Buck电路功耗计算(二)

    Buck电路功耗计算(二)
    的头像 发表于 12-06 17:06 950次阅读
    Buck电路<b class='flag-5'>功耗</b><b class='flag-5'>计算</b>(二)

    运放的功耗如何估算?

    我想问下关于运放的功耗估算问题,怎样计算运放的功率,我在网上找过些,有帖子是这个说的——
    发表于 11-24 08:21

    芯片架构计算任务改变对计算架构的需求

    渐进式改进与性能的巨大飞跃相结合,虽然这些改进将计算和分析能力提升到全新水平,但也需要全新的权衡考虑。这些变革的核心在于高度定制的芯片架构,芯片是在最先进的工艺节点开发的。
    发表于 09-27 14:30 875次阅读
    芯片<b class='flag-5'>架构</b><b class='flag-5'>计算</b>任务改变对<b class='flag-5'>计算</b><b class='flag-5'>架构</b>的需求

    计算的基础知识(定义/应用/优势/分类/发展历史)

    计算是现在很热门的话题,很多的企业、行业都已经将传统的IT架构替换成云计算架构。很多兴起的应用:大数据、AI都比较需要用云
    的头像 发表于 08-03 10:56 1532次阅读
    云<b class='flag-5'>计算</b>的基础知识(定义/应用/优势/分类/发展历史)

    基于磁贴的GPU架构优缺点

    本指南介绍了基于磁贴的GPU架构的优缺点。它还将ARM马里基于瓷砖的GPU架构设计与台式PC或控制台中常见的更传统的即时模式GPU进行了比较。 马里GPU使用基于平铺的渲染体系结构。这意味着GPU
    发表于 08-02 12:54

    Arm机密计算架构用户指南

    在本指南中,我们将探讨保密计算在现代计算平台和解释机密计算的原理。然后我们描述Arm机密计算架构(Arm CCA)实现了Arm
    发表于 08-02 08:27

    边缘计算和算力网络的主要技术挑战及展望

    边缘计算发展至今已取得巨大进步,但仍面临诸多技术挑战,目前仍有三大问题亟待解决。 首先是安全性的问题。边缘计算的分布式架构增加了攻击向量的
    发表于 05-23 15:40 0次下载
    边缘<b class='flag-5'>计算</b>和算力网络的主要技术<b class='flag-5'>挑战</b>及展望

    边缘计算架构分析

    边缘计算架构分析 2021云计算十大关键词分别是:云原生、高性能、混沌工程、混合云、边缘计算、零信任、优化治理、数字政府、低碳云、企业数字化转型。 云原生:云
    发表于 05-18 15:44 0次下载
    边缘<b class='flag-5'>计算</b><b class='flag-5'>架构</b>分析

    知存科技WTM存内计算芯片原理分析

    区别于传统冯诺依曼架构,存算一体架构是直接使用存储器件单元完成乘加计算,无需数据读写与搬运,可以在极低功耗下完成大规模的深度学习运算,大大提
    的头像 发表于 05-11 15:29 1335次阅读
    知存科技WTM存内<b class='flag-5'>计算</b>芯片原理分析