0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用光之力操控细胞,光镊"爆冷"夺下诺贝尔物理学奖

罗欣 来源:中国科普博览 作者:罗欣 2018-10-03 10:36 次阅读

来源:中国科普博览

2018年诺贝尔物理学奖于北京时间10月2日17点50分正式揭晓,发明光镊技术的美国物理学家,阿瑟·阿什金(Arthur Ashkin),以及开创了啁啾脉冲放大技术的唐娜·斯特里克兰(Donna Strickland)、 热拉尔·穆鲁(Gérard Mourou)共同分享了该奖项。值得一提的是,唐娜·斯特里克兰是诺贝尔物理学奖历史上第三位女性获奖者。

来源:诺奖官网△斩获诺奖的三位科学家肖像

本次物理诺奖结果揭晓之后,各路观察家都表示没有想到,绝对堪称“黑马”“大冷门”,很多科研界人士甚至压根没听说过这几种技术。不过,在各自的专业领域,它们都已经是科学家们非常仰赖的工具了。

这两项成果虽然都归属于激光研究领域,但彼此仍然有着较大的区别。其中的光镊虽然内涵深奥,但其实稍加简介就能让普通人建立概念。今天,我们就先试着让大家了解一下这个能够以光的力量来操纵细胞的诺奖成就。

光镊诞生的发想——光之力

伴随着上世纪60年代以来激光束流相关的产生、控制技术的进展,利用光来操作微小物体的“光镊”随之登上了历史舞台。阿瑟·阿什金教授曾在贝尔实验室和朗讯科技公司任职,他很早就开始进行光操控微粒的研究工作,并最终于1986年公开了他的第一代光镊。

光镊利用了“光的力”(Photon force/ radiation pressure,可以译为光压、辐射压等等),这是普通民众并不熟悉的领域。我们已经知道光可以协助动物产生视觉,可以为植物提供能量来源,可以加热物体。如今,在光的力学领域也诞生了令世界瞩目的成果。

中学物理中,我们已经了解了光同时具有波和粒子的双重性质,所谓波粒二象性。与人体被飞来的棒球击中后产生冲击一样,光的粒子即光子在接触物体后,同样会对该物体施加力的作用。

当然,我们没有被强烈的日光或者探照灯击倒在地是有原因的,光的压力大概仅仅在10亿分之一到100亿分之一牛这个数量级,所以说能用肉身感受到光压的人显然是不存在的。

然而,越是微小的物体,就越容易被微小的力所撼动。例如,红血球、细菌一类人体细胞或者微生物等等都对光压非常敏感。来自光的微小压力可以让微小的物体在不受到积压破坏的前提下进行移动。

光镊是如何让光操控微粒成为可能的

具体来说,光镊系统一般由照明光路和控制光路构成,照明光路负责采集成像所需的信号,而控制光路用来控制和限制微小物体的运动。控制光路的核心是汇聚性能特别好的激光束发射系统。

来源:公有领域 △光镊系统示意图,红色代表控制光路,蓝色代表照明光路,操纵室位于中间,最右侧代表位置测量装置

来源:公有领域 △光镊系统示意图,红色代表控制光路,蓝色代表照明光路,操纵室位于中间,最右侧代表位置测量装置

我们知道激光的特性之一就是可以被汇聚到一个十分微小的光斑上,这是普通光源所无法实现的。对于所要操控的微小物体来说,这种激光束汇聚形成的强聚焦光斑会形成一个类似“陷阱”的机构(称为三维光学势阱),微粒将会被束缚在其中。

一旦微粒偏离这个“陷阱”中的能量最低点(即位置的稳定点),就会受到指向稳定点的恢复力作用,好像掉进了一个无法摆脱的“陷阱”一般。如果移动聚焦光斑,微粒也会随之移动,因此便能实现对微粒的捕获和操控。

来源:公有领域 △激光汇聚在束流最细处(称为“光腰”),微粒将在此处被俘获于三维光学势阱

光镊技术早已大显神通

光镊技术在生物学研究领域已经有了相当广泛的应用,例如将不同细胞挤压在一起,或者向细胞中注入微量物质或者微小物体一类场合,都是光镊大显身手的时机。又如在环境科学领域,经常会有区分水中数种微小物体的需求,利用光镊可以将各种物质在无损条件下容易地分离,给之后的精密分析创造良好的条件。

此外,在操控的同时,鉴于激光波长良好的稳定性和高精度,光镊还可以同时获得大量空间测量数据。有研究人员利用光镊测量了驱动蛋白在微管上行走的距离数据,从而推算出驱动蛋白每走一步的能量正好相当于一个ATP水解所释放的能量,堪称光镊操控性和测量性结合的绝好案例。

来源:百度百科“驱动蛋白”条目 △驱动蛋白在细胞支架上搬运囊泡的示意图

直到笔者打出“光镊”两个字的时候,搜狗输入法还没有录入这个词组……相信对于绝大多数人来说,光镊都是一个相当陌生的概念。光镊技术所代表的一系列微操控技术,的的确确为人类在诸多领域带来了极为便利的工具。此番斩获诺奖,虽然出乎大多预测所料,确也名副其实。相信随着诺贝尔奖的颁发,光镊技术必然会在世界范围内掀起一股科普风潮。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 诺贝尔
    +关注

    关注

    0

    文章

    9

    浏览量

    7469
收藏 人收藏

    评论

    相关推荐

    基于轨道电润湿的液滴操控技术,有望用于新一代数字微流控平台

    电润湿(electrowetting)现象于1875年由法国物理学家Lippmann提出,作为现有最成熟的液滴电操控方法,已成功应用于数字微流控、传热强化、淡水收集等领域。
    的头像 发表于 04-19 18:24 838次阅读
    基于轨道电润湿的液滴<b class='flag-5'>操控</b>技术,有望用于新一代数字微流控平台

    差示扫描量热仪 紫薯抗性淀粉的制备工艺及物理学特性研究

    温度、比热容及热焓等。紫薯抗性淀粉的制备工艺及物理学特性研究【(1、吉林省农业科学院农产品加工研究所2、吉林农业大学食品科学与工程学院,马林元;李璐;孙洪蕊;刘香英
    的头像 发表于 01-23 10:31 114次阅读
    差示扫描量热仪 紫薯抗性淀粉的制备工艺及<b class='flag-5'>物理学</b>特性研究

    简单认识光电器件

    ,将光电效应的本质展现在世人的面前,并因此获得 1921年的诺贝尔物理学奖。20世纪 30 年代后,人们对半导体物理特性的研究,特别是对半导体光学性质的研究,进一步夯实了光电器件的物理
    的头像 发表于 01-23 09:12 373次阅读

    改变我们生活的锂离子电池 | 第三讲:获得诺贝尔奖以及锂离子电池的普及史

    改变我们生活的锂离子电池 | 第三讲:获得诺贝尔奖以及锂离子电池的普及史
    的头像 发表于 12-05 17:13 287次阅读
    改变我们生活的锂离子电池 | 第三讲:获得<b class='flag-5'>诺贝尔</b>奖以及锂离子电池的普及史

    石墨烯之父——安德烈·海姆,好奇心驱使下的幽默大师和创新者

    安德烈·海姆教授是卓越科学家,被誉为“石墨烯之父”,获诺贝尔物理学奖,对石墨烯材料有重大贡献。他重视好奇心,鼓励将好奇心集中在研究领域。他认为石墨烯是一种非常年轻的材料,未来有着无限的可能性,可以应用于电池、光照材料、冷却LED等方面。保持好奇心是激发创新和提高解决问题能
    的头像 发表于 10-31 21:36 398次阅读
    石墨烯之父——安德烈·海姆,好奇心驱使下的幽默大师和创新者

    阿秒光脉冲是什么呢?阿秒光脉冲又是如何产生的呢?

    2023年诺贝尔物理学奖授予皮埃尔·阿戈斯蒂尼 (Pierre Agostini)、费伦茨·克劳斯 (Ferenc Krausz) 和安妮·卢利尔 (Anne L’Huillier),“以表彰他们为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”。
    的头像 发表于 10-17 09:22 1325次阅读
    阿秒光脉冲是什么呢?阿秒光脉冲又是如何产生的呢?

    “发现和合成量子点”斩获诺奖 晶能光电积极融入显示产业变革

    近日,因“发现和合成量子点”,来自美国麻省理工学院的蒙吉·巴文迪、美国哥伦比亚大学的路易斯·布鲁斯和俄罗斯物理学家阿列克谢·伊基莫夫被授予2023年诺贝尔化学奖。
    的头像 发表于 10-09 15:41 718次阅读
    “发现和合成量子点”斩获诺奖 晶能光电积极融入显示产业变革

    晶体管和芯片的关系是什么?

    Bardeen、Walter Brattain于1947年发明并获得诺贝尔物理学奖。它的原理是基于半导体物理学中的PN结,PN结是n型半导体和p型半导体结合形成的界面,具有一个类似于电容的特性。应用电压后,PN结中的少数载流子
    的头像 发表于 08-25 15:21 1674次阅读

    高导热石墨烯膜提升电子产品散热性能

    具有重要的应用前景,被认为是一种未来革命性的材料。英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。石墨烯常见的粉体生产的方法为机械剥离法、
    的头像 发表于 08-15 10:27 749次阅读
    高导热石墨烯膜提升电子产品散热性能

    拓展基于电磁学巴比涅原理的布克关系式

    诺贝尔物理学奖;导师约翰·阿什沃斯·拉特克利夫在剑桥大学享有崇高声誉,他写的书籍和论文是清晰阐述的典范,在使用英语进行科学解释方面,无人能出其右;师弟马丁·赖尔爵士因射电天文学 (Radio
    的头像 发表于 08-07 14:15 943次阅读
    拓展基于电磁学巴比涅原理的布克关系式

    一种用于测量单细胞瞬态响应的封闭式微流控芯片

    液体交换功能和微流控芯片的集成在生物医学和生物物理学领域发挥着至关重要的作用,因为其能够控制细胞外环境,并且同时实现对单细胞的刺激和检测。
    发表于 08-03 09:06 273次阅读
    一种用于测量单<b class='flag-5'>细胞</b>瞬态响应的封闭式微流控芯片

    厦门大学研制出拓扑自旋固态光源芯片

    2016年,冷门的“拓扑”折桂诺贝尔物理学奖,一时间“拓扑”和洞洞的故事传遍世界。
    的头像 发表于 07-26 14:35 566次阅读

    7月,上海等你!| 24届全国半导体物理学术会议

    为促进半导体物理研究领域的学术交流,把握国际重大前沿领域的发展动向,提升国际学术影响力,世界著名物理学家、国家最高科学技术奖获奖者黄昆院士于1978年倡导召开第24届全国半导体物理学术会议,由中
    的头像 发表于 07-07 16:38 729次阅读
    7月,上海等你!| 24届全国半导体<b class='flag-5'>物理学</b>术会议

    电化学研究领域巨人锂离子电池之父、诺贝尔化学奖得主约翰·B·古迪纳夫逝世

    岁的古迪纳夫发明了磷酸铁锂正极材料,约翰·B·古迪纳夫是固体物理学家,钴酸锂、锰酸锂和磷酸铁锂正极材料的发明人,锂离子电池的奠基人之一;同时也是2019年诺贝尔化学奖得主。被业界称为“锂电池之父”。 1940年,古迪纳夫从格罗顿学校(美国高中)毕业
    的头像 发表于 06-27 12:00 821次阅读

    了解毫米波相控阵 -- 之二

    面积大,并且球面始终需要对准发射源,不适用于发射、接收快速运用的场景。 图:(a)全向辐射的电磁波,(b)增大天线面积来接收更多信号 于是,天线“阵”就被发明了出来。 天线阵是诺贝尔物理学奖获得者
    发表于 05-06 15:10