0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

电子设计 作者:电子设计 2018-11-20 09:03 次阅读

1.引言

目前工业、医疗、天文和军事对近红外探测和成像有大量需求,本文介绍了一种响应近红外的新型高增益GaAs/InGaAs量子光电探测器。首先测试和讨论了探测器的I-V特性,探测器偏压为-1.5V时响应率大于10A/W,响应率随光照功率增大减小。针对探测器特性和探测器阵列规模设计了2×8元读出电路,探测器和读出电路对接后的样品工作在77K条件下。探测器偏压为-1.5V,积分时间为200μs时探测器率达到1.38×1010cmHz1/2/W,达到实际应用的要求。为验证探测器和读出电路及对接样品的实用性,最后设计了数据采集卡和成像系统,给出了测试结果。

2.探测器和读出电路

2.1 探测器

探测器的I-V特性可以为读出电路设计提供重要依据,为此在光电测试平台采用keithley 4200-SCS半导体特性测试仪测试探测器特性。探测器阵列为2×8元,单元探测器面积为80×80μm.测试过程中作为公共电极的衬底电位固定,扫描单元探测器一端的电压。

图1是器件的I - V特性,与Q W I P器件不同,特性曲线明显非对称。探测器有一个-0.8V的阈值电压,探测器偏压大于-0.8V后响应电流迅速增大,在-0.8V~-3V区间相应电流随偏压变化缓慢。正向偏置时探测器响应电流相对较小。测试得77K,-1.5V时探测器暗电流小于10-13A,暗电流较小有利于降低噪声,提高探测率和信噪比。C-V特性测得探测器的电容约7.5pF.

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

图2是不同光照功率时探测器的响应率,结果显示探测器的响应率远大于1A/W,偏压为-1V时响应率大于10A/W,说明探测器量子效率和光电增益较大。测试结果还显示探测器的响应率随光照功率增大减小,这个特性有利于提高成像系统的动态范围。

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

探测器的工作偏压对焦平面工作有重要影响,需要仔细选择和严格控制。

图3显示探测器偏压为-1V时动态阻抗较大,大动态阻抗表示探测器响应电流随工作偏压变化较小,降低了探测器工作偏压的稳定性要求,提高了探测器阵列响应的一致性。因此探测器阵列与读出电路对接后选择-1V为工作电压。

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

2.2 读出电路

根据探测器特性设计读出电路,结构如图4所示,包括行选开关、电容互阻放大器(CTIA)、相关双采样电路(CDS)、列选开关和输出缓冲器。采用CTIA结构为列放大器可以稳定探测器工作偏压,提高注入效率和线性度,CDS电路可以抑制固定图形噪声。

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

读出电路工作过程如下:首先选通一行探测器与CTIA列放大器连接,然后列放大器复位,使积分电容放电,探测器上电极的电位复位到复位电位。复位后列放大器开始积分,CDS电路采样和保持列放大器的复位信号和积分信号。最后在列选开关的控制下依次选通采样保持电路,通过输出缓冲器依次输出八个探测器积分信号。

接着重复上面的读出过程,开始另一行探测器的读出。

3.测试结果

3.1 探测器阵列与读出电路对接测试

采用CSMC 0.6μm DPDM工艺设计并流片2×8读出电路,CTIA积分电容设计为6pF.通过Si转接基板实现读出电路与2×8元探测器阵列对接,如图5所示。对接样品安装在杜瓦内加液氮制冷后固定在光学平台上,采用He-Ne激光器作为光源,发出的光经过衰减聚焦照射到器件表面。电路的工作电源和各个模拟电压通过外部测试电路提供,测试中探测器单元电极电位设定为2.5V,公共电极设定为3.5V,探测器工作电压为-1V.

图6显示了光照功率为117nW,积分时间从20μs变化到200μs时读出电路输出电压的变化,结果读出电路的线性度好于99.5%,输出信号摆幅为2V,电荷容量为7.5×107.输出电压与光照功率的关系如图7所示,光照功率大于800nW时读出电路饱和。

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

探测器阵列与读出电路对接后测试得噪声特性如图8所示,噪声随积分时间增大减小,平均噪声为0.91mV,对接后样品的信噪比为67dB.噪声的特性与读出电路输入端探测器和列放大器工作频率相关,输入端探测器工作频率为1/2Tint[2].当积分时间增大,探测器和列放大器的工作频率下降,减小了噪声带宽,读出电路的输出噪声减小,因此延长积分时间有利于提高焦平面的探测率。图9是探测率与积分时间的关系,随积分时间增大,噪声减小,因此探测率增大。探测器偏压为-1.5V,积分时间为200μs时探测器率达到1.38×1010cmHz1/2/W,达到实际应用的要求,为进一步大面阵读出电路和探测器阵列的研制提供了依据。

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

3.2 数据采集与成像系统

为了验证对接后样品的工作性能,进一步设计了数据采集电路和成像系统,系统框图如图10所示。系统包括stm32处理器上位机和显示器、对接后的焦平面阵列和光电测试平台。Stm32处理器输出读出电路驱动控制信号,并利用自身集成的ADC完成读出电路输出模拟信号的数字化,然后通过USB接口把数字化的信号传输到上位机。通过VisualStudio6.0设计可视化图形界面,用灰度图显示表示16个探测器单元的响应。

图11分别给出了弱光条件和强光条件时2×8焦平面输出波形和灰度图显示。

探测器工作偏压为- 1 . 5 V , 积分时间为100μs,当光照较弱时输出电压较小,16探测器单元显示的相应的点亮度较低,光照较强时,相应点的显示亮度变亮。

新型量子光电探测器的I-V特性与读出电路的对接测试介绍

4.结论

测试分析了一种新型量子光电探测器特性,探测器有一个-0.8V的阈值电压,偏压大于阈值电压后器件响应率远大于1A/W,且响应率随光照功率增大减小。2×8探测器阵列与设计的读出电路通过Si基板对接,对接后的焦平面阵列线性度好于99.5%,信噪比达到67dB,探测器偏压为-1.5V,积分时间为200μs时探测器率达到1.38×1010cmHz1/2/W,达到实际应用的要求。采用设计的数据采集卡和成像系统验证了对接样品的实用性,为进一步大面阵读出电路和探测器阵列的研制提供了有益的参考。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 探测器
    +关注

    关注

    14

    文章

    2439

    浏览量

    72069
  • 噪声
    +关注

    关注

    13

    文章

    1070

    浏览量

    47062
  • 医疗
    +关注

    关注

    8

    文章

    1726

    浏览量

    58142
收藏 人收藏

    评论

    相关推荐

    解析新型量子光电探测器读出与显示

    目前工业、医疗、天文和军事对近红外探测和成像有大量需求,本文介绍了一种响应近红外的新型高增益GaAs/InGaAs量子光电
    发表于 07-28 16:16 1935次阅读
    解析<b class='flag-5'>新型</b><b class='flag-5'>量子</b><b class='flag-5'>光电</b><b class='flag-5'>探测器</b>的<b class='flag-5'>读出</b>与显示

    基于零维材料的光电探测器原子结构

    量子探测器的主体结构为三明治结构,发射极和收集极均为重掺杂层,势垒层之间堆叠二维量子点阵列。量子探测器主要分为PIN结构
    发表于 07-10 16:37 843次阅读

    位置敏感探测器测量电路噪声分析

    光电流应大于7μA,该模拟结果可以作为PSD测量电路设计的一个重要参考。【关键词】:位置敏感探测器件;;位置分辨力;;电路噪声【DOI】:CNKI:SUN:XXYD.0.2010-01
    发表于 04-22 11:45

    光子探测器

    相结合,应用于同步辐射和常规实验室光源等各个领域。单光子计数技术能够消除所有探测器噪声,并提供优质的实验数据。在采集数据时,能够有效排除读出噪声和暗电流的干扰,其在实验室光源的应用中具有特别优势。实验室
    发表于 03-03 19:12

    高增益低噪声的探测器读出电路设计

    信号十分微弱,任何过大的电路噪声、偏移都可以将信号湮没,因此提高读出电路输出信号的SNR是微光设计的关键之一。本文采用的新型电容反馈跨阻放大型读出
    发表于 11-12 15:59

    吉时利——半导体分立器件I-V特性测试方案

    `吉时利——半导体分立器件I-V特性测试方案半导体分立器件包含大量的双端口或三端口器件,如二极管,晶体管,场效应管等,是组成集成电路的基础。 直流I
    发表于 10-08 15:41

    用于PV电池板模块的I-V扫描测试电路

    精确的光伏 I-V 特性分析用于 PV 电池板模块的 I-V 扫描测试电路
    发表于 01-21 07:26

    如何设计一个高增益的光电探测器电路

    如何提高APD的光电转换效能?噪声对光电探测器电路的影响是什么?如何设计一个高增益的光电探测器
    发表于 04-14 06:23

    怎样去测量光电池的I-V特性

    如何利用2420型高电流源表去测量光电I-V特性?有哪些步骤?
    发表于 05-11 06:12

    如何去设计一种高增益低噪声的探测器读出电路

    如何去设计一种高增益低噪声的探测器读出电路?如何对探测器读出电路进行仿真
    发表于 05-31 07:26

    光电式纬线探测器电路

    光电式纬线探测器电路图?       光电式纬线探测器
    的头像 发表于 08-02 09:12 5134次阅读
    <b class='flag-5'>光电</b>式纬线<b class='flag-5'>探测器</b>及<b class='flag-5'>电路</b>图

    探测器光电发射探测器等光辐射探测技术的解析

    本文介绍了光辐射探测器基础、热探测器光电发射探测器光电导等光辐射
    发表于 11-18 11:26 11次下载
    热<b class='flag-5'>探测器</b>和<b class='flag-5'>光电</b>发射<b class='flag-5'>探测器</b>等光辐射<b class='flag-5'>探测</b>技术的解析

    光电探测器有哪些!如何选型

     光探测器按照工作原理和结构,通常分为光电探测器和热电探测器,其中光电探测器包括真空
    发表于 11-28 09:04 2.4w次阅读
    <b class='flag-5'>光电</b><b class='flag-5'>探测器</b>有哪些!如何选型

    PbSe量子点被用于制备高性能的光电探测器

    光电探测器在图像传感、环境监测、通信等领域引起广泛关注。近年来,量子点作为一种光电性能优异的半导体纳米材料,被广泛应用于光电
    的头像 发表于 11-21 10:10 2342次阅读

    一种大电荷处理能力红外探测器读出电路像素设计

    读出电路将红外探测器二极管激发产生的光电子收集、积分成为电压信号并按序读出,使其变成后端系统可读的电信号,是红外焦平面
    的头像 发表于 01-09 09:29 260次阅读
    一种大电荷处理能力红外<b class='flag-5'>探测器</b><b class='flag-5'>读出</b><b class='flag-5'>电路</b>像素设计