0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习着眼未来预测

智能制造 来源:未知 作者:胡薇 2018-07-02 16:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

机器学习,是指计算机程序通过经验来提高任务处理性能的行为。让机器能够学习模仿人类大脑并自动处理与分析海量数据,这对于人类来说可不是轻而易举的事情。那么机器学习是如何帮助我们解决实际问题的呢?

传统工业时代,人类在生产过程中会通过手动运行机器并观察其运作模式总结经验,而进入工业4.0时代,机器开始学习模型,代替人工进行重复而复杂的工作。据统计,目前全球已经有150亿台机器连接了互联网,到 2020 年,这一数值将超过 500亿台。麦肯锡预测,随着智能机器设备的普及,到 2025 年,“智能工厂”的产值将高达 3.7 万亿美元。

产值提高的同时,伴随而来的是工业设备产生的“铺天盖地”的数据,只有“会学习”的智能机器,才能从大量数据中挖掘出价值。机器学习看似是一成不变的在反复收集、存储和分析数据,但相比传统生产方式,随着机器学习算法和计算能力的提高,它可以滤除不必要数据,识别不一致数据,并找到新的数据支持。在易于管理的同时,也为工业生产带来了重要价值。

从框架到流程 机器学习着眼未来预测

英特尔利用标准工业物联网(IIoT)框架区分数据与逻辑,让机器学习可以基于三个主要组成部分实现预测分析。

连通性:机器学习对现有传感器中的可用数据,以及可以通过集成新的传感器收集的数据进行识别,根据数据源和数据类型将信息结构标准化,最终能够简化数据集成。服务导向架构(SOA)可以使未来变化造成的影响降到最低,还能根据当前环境实现快速更新。

数据转换:为了通过第三方工具和开源工具实现可视化分析,英特尔提供了标准化的数据结构。这些数据结构保留了独有的数据源及其他识别元素,确保我们能够追溯结构的信息来源,利用标准信息结构简化数据集成。

建立数据等级:最开始英特尔通过单一工具来识别机器行为,之后不断在框架中加入相同类型的其他工具,用来了解这些工具在不同情境中的行为,并通过数据挖掘建立了工具、流程和产品之间的联系,构成了自动化模型。

在生产制造领域,任何延迟、故障或错误都可能导致生产“单元”中断。工厂里有成千上万台机器,仅仅靠人工去检查和修复,势必需要耗损大量的人力资源。通过机器学习,设备能够更好地理解数据,提前自我修复,并进行预防性的维护。英特尔致力于利用机器学习来帮助判断设备的健康状态以及预测晶片质量,最大限度地提高生产效率。

从数据到价值 机器学习简化分析过程

在数据处理中,基于单一数据进行分析往往容易出现偏差,所以在处理过程中需要考虑具体的情景。比如,在测量发动机排气管的内部压力时需要考虑启动发动机,以及水流经排气管所需的时间、温度以及状况发生时发动机的状态等因素。

英特尔在机器学习过程中会不断结合其他数据源,加强对于工具和流程状态的理解,增强超量值和流程中其他情境之间的关系,最大化数据应用的价值。

机器学习现在已广泛应用于多个行业,汽车、航空和石油天然气等行业都是主要受益者。它能够基于计算机程序学习数据,无需进行编程就可根据经验自主改进。探索永无止境,对于机器学习,英特尔将继续深化见解并致力于为智能制造带来更大的利益。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英特尔
    +关注

    关注

    61

    文章

    10275

    浏览量

    179281
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136230

原文标题:超能力预知未来,机器学习重新定义智能制造

文章出处:【微信号:mfg2025,微信公众号:智能制造】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于全局预测历史的gshare分支预测器的实现细节

    GShare预测机制简介 GShare预测机制作为一种常用的分支预测机制,通过基于分支历史和分支地址来预测分支指令的执行路径。分支历史是指处理器在执行程序时遇到的所有分支指令的执行情
    发表于 10-22 06:50

    自主生产:制造业的未来

    已经通过智能应用程序与机器联网,并进入学习系统,对生产偏差做出实时反应。 到 2030 年,生产格局将发生根本性变化:半自动单元网络将取代传统的生产线。这些单元将自我组织,对不断变化的要求作出反应,并
    发表于 09-15 15:08

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 2632次阅读

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    成形时延缩短至3μs...... 4) 工业4.0神经中枢:机器视觉系统响应速度突破120fps;预测性维护准确率提升至99.2%...... 未来展望:当FPGA遇见生成式AI,Deep Seek
    发表于 03-03 11:21

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来
    的头像 发表于 02-13 09:39 619次阅读

    人工智能和机器学习以及Edge AI的概念与应用

    与人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能和机器学习是现代科技的核心技术 人工智能(AI)和机器学习(ML)是现代科技的
    的头像 发表于 01-25 17:37 1573次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的概念与应用

    嵌入式机器学习的应用特性与软件开发环境

    作者:DigiKey Editor 在许多嵌入式系统中,必须采用嵌入式机器学习(Embedded Machine Learning)技术,这是指将机器学习模型部署在资源受限的设备(如微
    的头像 发表于 01-25 17:05 1209次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    Arm 技术预测:2025 年及未来的技术趋势

    专业化、互联的全球半导体供应链有着充分的了解,覆盖数据中心、物联网、汽车、智能终端等所有市场。因而,Arm 对未来技术的发展方向及未来几年可能出现的主要趋势有着广泛而深刻的洞察。 基于此,Arm 对 2025 年及未来的技术发展
    发表于 01-14 16:43 472次阅读
    Arm 技术<b class='flag-5'>预测</b>:2025 年及<b class='flag-5'>未来</b>的技术趋势

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 1979次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    指令和当前机器人静态图像,生成一段预测未来状态视频。从这些预测视频中,可以提取机器人的位姿信息,并解码出控制所需的速度、加速度等关键参数,
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    非常感谢电子发烧友提供的这次书籍测评活动!最近,我一直在学习大模型和人工智能的相关知识,深刻体会到机器人技术是一个极具潜力的未来方向,甚至可以说是推动时代变革的重要力量。能参与这次活动并有机会深入
    发表于 12-27 14:50

    Molex莫仕预测:连接器需求将随AI等技术发展显著增长

    全球电子行业的领军者及连接技术创新先锋Molex莫仕公司近日对未来市场趋势进行了预测。据其分析,在未来12至18个月内,随着生成式人工智能(AI)、机器
    的头像 发表于 12-27 13:40 1023次阅读

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 699次阅读

    【「具身智能机器人系统」阅读体验】+初品的体验

    ,逐渐学习并优化自己的行为,以更好地服务家庭成员。 目前,具身智能机器人在解决实际问题中已展现出巨大的潜力,例如它已应用于养老、医疗、灾害救援等领域。 尽管具身智能已取得了显著进展,但未来的研究还需要
    发表于 12-20 19:17

    zeta在机器学习中的应用 zeta的优缺点分析

    在探讨ZETA在机器学习中的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在机器学习
    的头像 发表于 12-20 09:11 1625次阅读