0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Python如何奠定AI领域的老大地位

OaXG_jingzhengl 来源:未知 作者:胡薇 2018-05-20 11:43 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在所有编程语言里,Python并不算萌新,从1991年发布第一个版本,至今已经快30年了。

最近几年,随着人工智能概念的火爆,Python迅速升温,成为众多AI从业者的首选语言。

根据数据平台 Kaggle发布的2017年机器学习及数据科学调查报告,在工具语言使用方面,Python是数据科学家和人工智能从业者使用最多的语言(见下图)。

IEEE综览(IEEE Spectrum)发布的2017最受欢迎编程语言列表中,Python同样位列第一(见下图)。

为什么?

原因1:Python是一种说人话的语言

所谓“说人话”,是指这种语言:

开发者不需要关注底层

语法简单直观

表达形式一致

我们先来看几个代码的例子:

C 语言Hello World 代码:

intmain(){printf("Hello, World!");return0;}

Java 语言Hello World 代码:

publicclassHelloWorld{ publicstaticvoidmain(String[] args){ System.out.println("Hello World!"); }}

Python 语言Hello World代码:

print("Hello World!")

仅仅是一个Hello World程序,就能看出区别了,是不是?

编译 VS 解释

当然,仅仅是一个Hello World的话,C和Java的代码也多不了几行。

可是不要忘了,C和Java的代码要运行,都必须先经过编译的环节。

对于C语言来说,在不同的操作系统上使用什么样的编译器,也是一个需要斟酌的问题。一旦代码被copy到新的机器,运行环境和之前不同,还需要重新编译,而那台机器上有没有编译器还是一个问题,安装上编译器后,也许和之前最初的编译器有所区别,还得修改源代码来满足编译环境的需求……

我到底做错了什么?我只是想运行一个别人写的程序而已[泪目]

而Python则不用编译,直接运行。而且都可以不用写文件,一条条语句可以直接作为命令行运行。不要太方便咯。

语言语法

和Python比,Java的语法更“啰嗦”。

从上面的例子已经可以看出,创建一个链表,Java还需要声明和逐个插入节点,而Python则可一行代码完成从链表创建到插入节点及赋值的全部操作。

这还只是一个例子。在真正的使用中就会发现,对于很多非常简单基础的操作,Java非让你很别扭地写好几行,Python直接一句搞定。

这样的结果就是,Python写起来省事,读起来也方便。可读性远超Java。

表达风格

在10年或者更久远之前,Python经常被用来和Perl相提并论。毕竟在那个时候,C是系统级语言,Java是面向对象语言,而Python & Perl则是脚本语言的双子星。

Python和Perl在设计层面有一个非常大的区别:

Python力求让不同的人在撰写同样功能实现的代码时,所用的表达形式尽量一致;

而Perl则是故意追求表达的千姿百态,让同一个人在不同地方写同样功能时所用具体形式都不同。

从哲学层面讲,Perl的追求更加自由主义,更利于释放人类的多样化天性。也确实有很多Geek范儿程序员因为这一点推崇毫无限制的Perl,鄙视到处设限的Python。

然而,Perl写的程序——那叫一个乱七八糟!

当你想遇到问题,想在网上找点实例代码看看的时候,搜到的Perl example千姿百态,很难找到一种“大众”的解法。而不同写法之间,还很难保证相容。

这个问题其实在Python vs Java上也有,只不过程度要低得多。

Java语言本身并没有想要把自己变成书写代码诗歌的载体。但是因为它长年大量地被应用在企业级软件的后台开发,夹杂进了太多并非语言本身却又与其使用不可分割的东西,进一步加剧了Java的繁杂。

如果不是想成为代码诗人,或者语言大师,只是想用尽量简单直接的方法,把事情做了,首选语言确实是Python。

原因2:强大的AI支持库

矩阵运算

NumPy由数据科学家Travis Oliphant创作,支持维度数组与矩阵运算。结合Python内置的math和random库,堪称AI数据神器!有了它们,就可以放心大胆玩矩阵了!

大家知道,不管是Machine Learning,还是Deep Learning,模型、算法、网络结构都可以用现成的,但数据是要自己负责I/O并传递给算法的。

而各种算法,实际上处理的都是矩阵和向量。

使用NumPy,矩阵的转置、求逆、求和、叉乘、点乘……都可以轻松地用一行代码搞定,行、列可以轻易抽取,矩阵分解也不过是几行代码的问题。

而且,NumPy在实现层对矩阵运算做了大量的并行化处理,通过数学运算的精巧,而不是让用户自己写多线程程序,来提升程序效率。

有了Python这种:语法简洁明了、风格统一;不需要关注底层实现;连矩阵元素都可以像在纸上写公式一样;写完公式还能自动计算出结果的编程语言,开发者就可以把工作重心放在模型和算法上了。

ML模型

用Python实现大多数经典模型,几十上百行代码就够了。

当然,对于普通用户,也可以连算法都不用管,只是调用Scikit-Learn的接口就可以了。

比如,训练和使用一个logistic Regression模型,只需要下面几行代码就可以了:

#import the LogisticRegression from sklearn.linear_model import LogisticRegression #Use default parametersclassifier = LogisticRegression() #train modelclassifier.fit(train_set, target) #dotesty_hat = classifier.predict(test_set) #printouttestresultsprint y_hat

支持图表

Python还有许多图标方面的支持库。用来生成dashboard上的各种图形表格,是非常简单的事情。

比如使用Plotly图形库,下面这些炫彩的图形,就随便用啦:

原因3:规模效应

语言简单易学,支持库丰富强大,这两大支柱从早期就奠定了Python的江湖地位。

根据以高收入国家Stack Overflow问题阅读量为基础的主要编程语言趋势统计,可以看出,近年来,Python已然力压Java和Javascript,成为目前发达国家增长最快的编程语言(见下图)。

由图可见,2012年之后,对于Python相关问题的浏览量迅速增长,从时间上看,这一趋势正好和近几年人工智能的发展重合。

技术的普及推广就像滚雪球,早期的积累相对缓慢,一旦过了临界点,就是大爆发。

别的不说,就说现在tensorflow,caffe之类的深度学习框架,主体都是用Python来实现,提供的原生接口也是Python。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    89

    文章

    38091

    浏览量

    296613
  • 编程语言
    +关注

    关注

    10

    文章

    1959

    浏览量

    38914
  • python
    +关注

    关注

    57

    文章

    4857

    浏览量

    89586

原文标题:为什么Python是入行人工智能的首选语言?

文章出处:【微信号:jingzhenglizixun,微信公众号:机器人博览】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    一文了解Mojo编程语言

    资源受限环境,如物联网设备或实时控制系统。 总的来说,Mojo 的独特之处在于它填补了 Python 与底层语言之间的性能鸿沟,同时保持了开发者熟悉的语法和生态。随着其工具链的完善,Mojo 有望成为 AI 和高性能计算领域的重
    发表于 11-07 05:59

    AMD正在边缘AI领域开拓创新

    AMD 正在边缘 AI 领域开拓创新,并为可能实现的目标设定标准。
    的头像 发表于 09-25 16:55 699次阅读

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    保持停滞的情况下,依照目前计算机的能耗效率,至少还需要30年的努力才接近其水准,见图1所示。 图1 大脑与计算机的能量效率对比 图2 类脑芯片的前瞻性研究领域AI湿件 为此,一些想法超前的科学家
    发表于 09-06 19:12

    【「AI芯片:科技探索与AGI愿景」阅读体验】+内容总览

    AI芯片:科技探索与AGI愿景》这本书是张臣雄所著,由人民邮电出版社出版,它与《AI芯片:前沿技术与创新未来》一书是姊妹篇,由此可见作者在AI芯片领域的功力和造诣。 作者毕业于上海交
    发表于 09-05 15:10

    AI 芯片浪潮下,职场晋升新契机?

    职场、渴望在专业领域更进一步的人来说,AI 芯片与职称评审之间,实则有着千丝万缕的联系,为职业晋升开辟了新的路径。 AI 芯片领域细分与职称对应 目前,
    发表于 08-19 08:58

    NVIDIA AI助力科学研究领域持续突破

    随着 AI 技术的广泛应用,AI 正在成为科学研究的引擎。NVIDIA 作为重要的技术推手,持续驱动着 AI 系统解锁更多领域的科学突破。
    的头像 发表于 08-05 16:30 958次阅读

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    DeepSeek,大模型应用密集出现、频繁升级,这让作者意识到有必要撰写一本新的AI芯片图书,以紧跟时代步伐、介绍新兴领域和最新动向。 这就是《AI芯片:前沿技术与创新未来》的姊妹篇——《AI
    发表于 07-28 13:54

    任正非说 AI已经确定是第四次工业革命 那么如何从容地加入进来呢?

    ,TensorFlow、PyTorch用于构建和训练神经网络。以Python为例,通过编写简单的程序来处理数据,如读取数据集、进行数据清洗和预处理,这是进入AI领域的基本技能。 学习机器学习和深度学习
    发表于 07-08 17:44

    中软国际在大型银行AI项目领域实现重大突破

    近日,中软国际成功中标某全国性股份制银行2025年大模型算力扩容项目,标志着中软国际在大型银行AI项目领域实现重大突破,进一步巩固了其在金融科技领域的领先地位
    的头像 发表于 05-06 11:46 856次阅读
    中软国际在大型银行<b class='flag-5'>AI</b>项目<b class='flag-5'>领域</b>实现重大突破

    【「零基础开发AI Agent」阅读体验】+ 入门篇学习

    工程、RAG技术、和AI Agent是3个重要方面。其中AI Agent作为2024年最新兴的技术领域,具备很好的应用前景,本书对零基础小白普及和应用AI Agent有着很好的指导作用
    发表于 05-02 09:26

    华芯智造在半导体封装测试领域的领先地位

    作为专精特新企业,华芯智造在半导体封装测试领域占据领先地位
    的头像 发表于 03-04 17:40 762次阅读
    华芯智造在半导体封装测试<b class='flag-5'>领域</b>的领先<b class='flag-5'>地位</b>

    当我问DeepSeek AI爆发时代的FPGA是否重要?答案是......

    AI时代,FPGA(现场可编程门阵列)具有极其重要的地位,主要体现在以下几个方面: 1.硬件加速与高效能 • 并行处理能力:FPGA内部由大量可编程逻辑单元组成,能够实现高度并行的数据处理。这种
    发表于 02-19 13:55

    AI赋能边缘网关:开启智能时代的新蓝海

    ,准确率达到99.9%。 这一技术革新正在创造巨大的商业价值。在智慧城市领域AI边缘网关可以实现交通流量实时分析、违章行为智能识别;在工业互联网中,能够实现设备预测性维护、生产工艺优化;在智慧能源领域
    发表于 02-15 11:41

    AI主导下科技领域的蓬勃发展与变革

    24 位行业领袖的深度访谈,为我们揭示了 2025 年极具影响力的科技趋势,展现出 AI 主导下科技领域的蓬勃发展与变革。 一、AI 驱动的科技变革核心地位
    的头像 发表于 01-23 13:58 1085次阅读

    万兴科技亮相AMD东京AI &amp; HPC大会

    近日,AMD主办的Advancing AI HPC大会,不仅展示了万兴科技在AI技术领域的深厚积累和创新实力,也为公司进一步拓展国际市场、提升品牌影响力奠定了坚实基础。
    的头像 发表于 12-12 10:43 782次阅读