0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何用射频接收机测量噪声系数?这篇文章告诉你方法

电子设计 来源:互联网 作者:佚名 2017-12-26 09:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

多通道射频接收机接收的过程中,噪声的加入限制了信号的信噪比和灵敏度,由于射频接收机所接收到的信号较为微弱,其噪声特性显得尤为重要。另一方面在多通道成像的过程中,不同通道的接收路径有可能不同,即使接收路径一样,各通道的噪声特性也不可能完全一样。故接收机每个通道各级的噪声系数的精确测量非常重要。

传统的噪声系数测量方法不能满足测量大噪声系数的要求。且在实际的多通道测量中,需要使得被测通道处在接收状态,其他通道不工作以减少通道间的噪声干扰来保证测量的准确性。

考虑到接收到射频信号的微弱,射频接收机的前端通常有一个用低噪声放大器来实现的前置放大级,本文从接收机这种特性出发,以MRI射频接收机为例提出一种多通道切换测量噪声系数的方法,通过设计1个八选一的射频开关使得噪声系数的测试在不同通道切换,并利用控制前置低噪声放大器直流电源通断使其处在放大和不放大状态。在放大状态下,噪声被放大以提供热噪声源,反之提供冷噪声源。这种放大器开关测量法优化了Y因子测量噪声系数法,使得测量较为精确且容易进行。

1、优化测量噪声系数的原理

射频接收机的噪声主要包括电阻的热噪声和PN结的散弹噪声,均属于白噪声的范畴。白噪声不包括任何离散成分,其电平符合高斯分布。功率谱在一定的频率范围为均匀分布。噪声系数是表征线性二端口网络或二端口变换器系统噪声特性的一个重要参数。它的标准定义为:接收机输入端信噪功率比与输出端信噪功率比的比值。根据尼奎斯特定理,处于标准噪声温度T0(290 K)的输入端产生的资用噪声为功率为kT0 B;k为玻尔兹曼常数(1.38×10-23J/K);B为等效带宽。设网络的资用噪声增益为G,对于线性网络来说资用噪声增益等于资用信号功率增益,则仅由输入端所产生的输出资用噪声功率为GkT0B,设端口输入输出的信号及噪声功率分别为Psi,Pni,Pso,Pno,由此即可得到噪声系数(F)2 种互相等效的定义:

由于被测的接收机不是工作在线性区域,而信号源法需要知道被测网络的等效噪声带宽,要准确测定等效噪声带宽是很困难的,因此信号源法测试误差较大,实际测试中需采用噪声源法。常用的采用噪声源法的测量噪声系数方法包括:增益法,Y系数法和噪声系数仪法。使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确的。且可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。但当噪声系数超过10 dB,测量结果非常不准确。对于MRI的射频接收机来说,这种方法所能测量的噪声系数的范围太小,显然不适用。而增益法和Y系数法都是利用频谱仪来测量,所不同的是增益法需要事先知道被测元器件的资用增益,而且受到频谱仪噪声基底的限制。Y系数法是测量噪声系数的一种典型方法。在测量中,当被测网络的输入端处于2个不同的资用功率时(例如:噪声发生器的热态T和冷态T),输出端可以得到2个相应的资用功率PNO,PNO,通常把这两个功率之比记作Y,设这一个二端口的网络(或是二端口的元器件)等效噪声温度为Te,增益为G,被测网络的噪声系数为F,可得:

利用Y因子测量噪声系数需要冷噪声源和热噪声源以便在输入端实现不同的噪声功率输入,通常是通过对固态噪声源加电压和不加电压实现,即当噪声发生器被施加直流电压时,噪声发生器产生噪声输出形成热噪声源,当未施加电压时,存在于噪声发生器内部热扰动产生的剩余噪声形成冷噪声源。加电压的方法只适合测量较小的噪声系数,当被测网络的噪声系数较大时,需要获得较高的Y因子来减小测量误差,因此需要较高的直流电源来获得热噪声源,这在实际中是难以实现的,即传统的Y因子测量方法误差较大,所以需要对噪声源进行优化。由于接收机的第二级为前置低噪声放大器,它的噪声系数相对于接收机的其他级很小,可以直接用噪声系数仪测量。在接收机中所使用的低噪声放大器的增益为30 dB,故可以控制放大器使得它在工作即放大条件为下一级提供热噪声源,在不放大条件下提供冷噪声源,这样就可以得到较大的Y因子,减小测量大噪声系数时的误差。而且不需要额外的噪声源和直流电源,简化了设计。

2、多路信道切换(RF SWITCH)的实现

实验所用到的接收机有8个通道,实际测量噪声系数需要对每个通道单独用频谱仪进行测量,即八个通道只有一个通道工作,另外7个通道处于断路状态,而在射频接收机中,没有接收信号的通道输入需要用50 Ω的电阻盖住。根据以上分析需要设计一个8通道选任一通道的射频开关,且不工作的其他通道输出端呈50 Ω阻抗。

这种特性可利用PIN开关设计。PIN开关是利用PIN二极管不同偏置下电特性制成的射频半导体控器件。它具有优良的开关特性:当PIN二极管正向直流偏置时对射频信号呈近似短路状态;当PIN二极管反向偏置时对射频信号呈近似开路状态。PIN二极管开关具有控制速度快、损耗小、功率容量大的特点。

如图1所示,在每一路通道放置一个单刀单掷射频开关,每个开关均有一根控制线控制其通断。通过对8路控制线设置选择惟一的1路导通即可实现八选任一路的切换。

用矢量网络仪R&S ZVB4测量该射频开关的频率范围、插入损耗及隔离度,结果如图2所示:

图2为本文所设计的射频开关在中心频率为63.6 MHz,带宽为120 MHz下的特性,图2为开关导通时的S21曲线。图2的上方曲线为开关截止时的S21,下方曲线为截止时的S22(反映输出端的反射特性)。由图知该开关在导通状态下的插入损耗仅为-0.259 dB;而在隔离状态下中心频率附近的传输损耗为-32.205 dB,且输出端的反射系数为-34.568 dB。说明该开关在以接收机的工作频率为中心频率的宽带范围内具有良好的导通和截止特性,且在截止状态下输出端匹配良好。因为接收机只工作在中心频率附近的窄带范围,故此开关设计指标符合要求,且性能比设计指标更为优越。

3、接收机噪声测试结构及具体方法

接收机所接收到的信号的载波频率为63.6 MHz的窄带信号,故只需测量中心频率63.6 MHz,带宽范围较小的噪声特性。噪声测试需要测量出每一级的噪声系数,而接收机的每一级的噪声系数及增益各有不同,为了测量的准确性,必须用使用不同的测量方法。

由于低噪放的噪声系数较小,可以直接用噪声系数仪测量。实验中用Agilent公司生产的N8973A噪声仪进行测量,由于接收机所使用的低噪放直流供电在输出端,而噪声系数仪的输入端不能直接接直流电,故测量时要在放大器的输出接隔直电容再连入噪声仪。

对于接收机中噪声系数较大的网络,需要用上文提到的优化Y因子的测量方法,由于接收机本身的构造以及此种方法中需要放大器工作在放大/不放大2 种状态,测量中需要设计控制电路来达到测量要求。如图3,虚线方框内为实验设计的通道切换和前置放大器控制电路、方框外为接收机模型、放大器输入端用50 Ω替代接收线圈提供噪声输入,同时为了简化框图,只画出接收机的放大器后2级。在MRI射频接收机中,为低噪声放大器供电的电压(DC+10 V,如图3所示)是从系统的RF芯线即信号线引出的,测试设计中在每一路放置1个直流开关(K1~K8)控制放大器供电电压的通断。C3为隔直电容,L1,L2起到阻断射频信号,导通直流的作用,当某一路直流开关K闭合,10 V直流电压通过L2,L1到达放大器输出端,为放大器供电,使该路处在噪声放大状态。当K断开时放大器无供电电压,起不到噪声放大作用。控制直流开关K的通断即可为接收机的每一级测试提供冷热噪声源。

测试中,设置各路开关的控制线,使要测的那路导通,其余路断开,闭合该通道的直流开关,然后用频谱仪测量输出的噪声谱密度PNO_n,而后断开该路的直流开关,再用频谱仪测量输出的噪声谱密度PNO_n,由于室温T0(290 K)的噪声谱密度P。约为-174 dBm,设噪声源的等效温度为Tn,Tn,可得:

实验用的频谱仪为Agilent公司的F4411B,测试的中心频率为63.6 MHz,SPAN取20 MHz。选取“Function”中的“Noise",设定合适的VBW/RBW,调节RefLevel使频谱仪位于噪声基底,当Ref Level取-63 dBm时达到噪声基底,经“Average”后显示为-153.1 dBm。控制每路CON线,使得通路再8个信道转换,重复以上的测量步骤,便可得到每一路的噪声系数。

4、结语

利用此种方法对MRI射频接收机各个通道切换下的各级进行了噪声系数测试,实测的各个通道与设计中定义的指标值相差0.2 dB范围内,且由于高频通信系统的接收部分具有一定的共性,即通常下考虑整个接收机的噪声系数特性,接收机的第一级都要接前置低噪声放大器。故此类方法可以推广到其他的射频接收机当中。

本文解决了射频接收机多路信道噪声系数比较以及接收机不同模块的噪声系数测量。独创性地利用接收机前端的低噪声放大器

提供冷热噪声源优化Y因子测量方法,并以MRI射频接收机为例设计出性能优越的多路射频开关实现信道切换,实践证明该方法是适用而有效的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NC407B噪声二极管现货库存

    校准件开发以及接收机信噪比(SNR)与噪声系数测试等高端场景,尤其适用于5G/6G通信、卫星通信、毫米波雷达及航空航天等对频段覆盖和可靠性要求严苛的领域。核心参数频率范围:100 MHz – 110
    发表于 11-24 09:07

    AI接收机的工作原理和实现过程

    业内讨论了很多无线AI方案,其中“AI接收机”是大家重点关注的方向之一。相对于传统的接收机算法,AI接收机可以大幅度提升系统性能。在3GPPRAN/RAN1的会议上,可以看到很多AI接收机
    的头像 发表于 11-17 11:13 5701次阅读
    AI<b class='flag-5'>接收机</b>的工作原理和实现过程

    是德频谱分析仪N8975A噪声系数测试步骤与常见问题解析

    一、噪声系数测试步骤 是德频谱分析仪N8975A(Agilent N8975A)作为高性能噪声系数分析工具,其测试流程需严格遵循以下步骤: 1. 设备准备与初始化 开机后等待仪器完成自检,确保
    的头像 发表于 11-13 11:59 139次阅读
    是德频谱分析仪N8975A<b class='flag-5'>噪声系数</b>测试步骤与常见问题解析

    使用FSWP相位噪声分析仪进行动态噪声系数测量

    用于表征信号路径中放大器、变频器和其他设备的性能。被测设备或指定设备的噪声系数是系统设计人员在计算传输系统上行链路和下行链路预算时使用的一个关键参数。传统的噪声系数测量方法
    的头像 发表于 08-22 17:22 639次阅读
    使用FSWP相位<b class='flag-5'>噪声</b>分析仪进行动态<b class='flag-5'>噪声系数</b><b class='flag-5'>测量</b>

    ATR2652低噪声放大器芯片技术解析与应用指南

    GNSS(全球导航卫星系统)接收机的核心组件。无论是车载导航、便携设备还是专业测绘,ATR2652都能显著提升弱信号环境下的性能表现。下文将围绕其核心特性、设计要点及应用场景展开详细解析。 一、核心特性与技术优势 卓越的射频性能‌ 低
    的头像 发表于 06-11 09:42 711次阅读
    ATR2652低<b class='flag-5'>噪声</b>放大器芯片技术解析与应用指南

    ATR2660S低噪声放大器:为GNSS接收机提供卓越性能

    设备始终保持最佳性能。 先进工艺与卓越性能 ATR2660S采用了业界领先的GaAs pHEMT(砷化镓假晶高电子迁移率晶体管)工艺制造,这种先进的半导体技术使得该放大器在整个工作频段内都能表现出卓越的射频性能。特别值得一提的是,它具有‌超低噪声系数‌、
    的头像 发表于 06-05 14:42 535次阅读
    ATR2660S低<b class='flag-5'>噪声</b>放大器:为GNSS<b class='flag-5'>接收机</b>提供卓越性能

    精选好文!噪声系数测量的三种方法

    应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数
    发表于 05-07 10:18

    泰克示波器MDO32噪声系数测量

    一、噪声系数的定义及其在电子工程中的重要性 1.1 噪声系数的物理意义 噪声系数是衡量电子器件或系统噪声性能的关键参数,其本质是噪声因子F的
    的头像 发表于 03-28 13:33 696次阅读
    泰克示波器MDO32<b class='flag-5'>噪声系数</b><b class='flag-5'>测量</b>

    ADL5521 400MHz~4000MHz低噪声放大器技术手册

    ADL5521是一款高性能GaAs pHEMT低噪声放大器。它提供高增益与低噪声系数,适合于单一下变频IF采样接收机架构与直接下变频接收机。 高集成度的ADL5521内置有源偏置
    的头像 发表于 03-18 09:34 838次阅读
    ADL5521 400MHz~4000MHz低<b class='flag-5'>噪声</b>放大器技术手册

    ADL5523 400MHz至4000MHz低噪声放大器技术手册

    ADL5523是一款高性能的GaAs pHEMT低噪声放大器,可以为单一下变频转换IF采样接收机架构和直接下变频转换接收机提供高增益和低噪声系数。 该器件具有高集成度,内置有源偏
    的头像 发表于 03-14 17:41 849次阅读
    ADL5523 400MHz至4000MHz低<b class='flag-5'>噪声</b>放大器技术手册

    ALN4000-10-3530毫米波低噪声放大器WENTEQ

    设计。ALN4000-10-3530低噪声系数和高增益特性使其成为高频通信系统中的关键组件,能够有效提升信号接收的灵敏度和系统的整体性能。 参数 频率范围:38 GHz~42 GHz 增益:35 dB 噪声系数:3 dB 1
    发表于 03-12 09:30

    安捷伦N8975A噪声系数分析仪检测方式

    安捷伦N8975A噪声系数分析仪的使用说明如下‌: 基本信息 N8975A是安捷伦(Agilent)生产的高性能噪声系数分析仪,用于进行快速、准确和可重复的噪声系数测量。其频率范围为1
    的头像 发表于 02-24 15:20 820次阅读
    安捷伦N8975A<b class='flag-5'>噪声系数</b>分析仪检测方式

    射频知识基础:三种接收机的介绍

    关于接收机结构我们从最传统的超外差结构开始介绍。超外差结构能提供非常好的性能,但这种结构需要大量分离元件,像滤波器等。这种结构无法单芯片集成实现,因此出现了零中频,低中频接收机结构。超外差接收机
    的头像 发表于 12-31 16:40 1145次阅读
    <b class='flag-5'>射频</b>知识基础:三种<b class='flag-5'>接收机</b>的介绍

    ADC是不是分辨率越高,噪声系数越小?

    请问,是不是分辨率越高,噪声系数越小? 两者有没有明确的数量关系?
    发表于 12-18 17:31

    安捷伦Agilent N8973A噪声系数分析仪

    N 型 (m) 连接器 与 SNS 系列噪声源兼容 描述 N8973A是***的噪声系数分析仪,适用于快速、***和可重复的噪声系数测量。 通过
    的头像 发表于 12-11 14:53 768次阅读