0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI核心动力之深度学习神经网络的现状及发展趋势

HOPE开放创新平台 2017-12-01 09:48 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

11月30日,由海尔开放创新平台HOPE、模块商资源平台海达源主办的第33届众创空间模块商方案交互日精彩继续!

今天交互日围绕人工智能芯片标准及定制进行研讨,973项目首席科学家,西安交通大学龚怡宏教授、芯片设计专家,上海交通大学梁晓峣教授以及AIEC人工智能联盟专家纷纷助阵,通过主题演讲和圆桌论坛等形式,不断将研讨会氛围推向高潮。

01听专家讲AI未来走向何方

人工智能早已被捧上风口,其中算法、数据和计算能力是核心驱动力。也就是说这三个要素的发展情况将决定AI的未来发展。那么AI前景到底如何?

研讨会现场,龚怡宏教授为参会者梳理了AI核心动力之一——深度学习神经网络的现状及发展趋势。

973项目首席科学家,西安交通大学龚怡宏教授

龚教授精彩观点分享:

①深度学习神经网络未来发展将出现两大趋势:计算迁移和基于小样本集的学习算法;

②网络结构及效率不断优化,面向智能终端的AI处理芯片将出现;

③深度学习神经网络的压缩技术也将不断成熟;

而梁晓峣教授则通过类比GPU(图形处理器)发展历史的形式,分享了AI芯片的演进。

芯片设计专家,上海交通大学梁晓峣教授

梁教授精彩观点分享:

①Moore定律并没有失效,反而是GPU历史上对冲2P的最强武器,而同样的事情也可能发生在人工智能芯片上;

②目前芯片行业正面临行业最大的变数,新晋入局的互联网巨头以及AI新贵们力量足够强大,可能会改变行业格局;

③未来推动先进工艺的未必是Intel或NVIDIA,也许率先在1nm工艺上流片的是Google或者商汤;

两位教授深入浅出的演讲赢得了现场阵阵掌声,听众们纷纷表示受益匪浅。

2智能家电普及要靠芯片定制

作为智能家电行业存在的基础,人工智能芯片的优劣将直接反映在产品性能上,但是芯片研发上的高投入导致智能家电普及缓慢。

如何解决这一问题?智能芯片的上游定制化开发就是重要路径之一。

交互现场

通过芯片定制,人工智能资源方可以为企业提供高性价比的解决方案,在提高开发效率、快速满足用户需求的同时,也使智能家电更快进入千家万户。

海尔始终把用户体验放在第一位,这也是也是海尔智能家电不断前进的动力。

据海尔超前创新中心总监马国军介绍:“通过开放式创新,海尔致力于将电器变成网器, 互通互联,打造开放的创新生态系统。芯片定制作为智能家电的核心,在满足用户个性化需求,主动提供服务,为用户提供最佳体验上发挥着重要作用。”

3标准化推广,海尔义不容辞

实现智能家电的普及化,除了上游定制开发芯片外,还离不开标准化的推广。

而作为AIEC人工智能联盟中唯一的家电企业,海尔对于标准的推广更是义不容辞。为什么海尔会有这种“使命感”?活动现场,海尔超前创新中心总工程师俞国新博士给出了答案。

圆桌会议

用户需求:芯片标准的制定和推广可以让家电更“聪明、贴心”,对海尔来说,这种提升用户体验的工作自然要积极参与。

标准优势:国际、国内标准化领域家电第一的优势,使海尔可以有效推动标准的发布和运行。

平台对接:利用开放创新平台HOPE,海尔可以实时发布芯片研发需求,并通过与资源商的零距离交互,全面承接智能芯片的验证、试用评测等系列工作。

一上午的大咖对话让不少与会者感觉意犹未尽,而从这场研讨会后再出发,未来人工智能芯片标准制定和定制化之路又将走向何方,值得期待。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49746

    浏览量

    261602

原文标题:众创空间交互日DAY2:小芯片里有智能家电普及的大文章!

文章出处:【微信号:haierhope,微信公众号:HOPE开放创新平台】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    AI芯片不仅包括深度学细AI加速器,还有另外一个主要列别:类脑芯片。类脑芯片是模拟人脑神经网络架构的芯片。它结合微电子技术和新型神经形态器件
    发表于 09-17 16:43

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“
    的头像 发表于 09-10 17:38 698次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>神经网络</b>

    人工智能技术的现状与未来发展趋势

    。   一、AI核心技术突破     1.   深度学习(Deep Learning)       深度
    的头像 发表于 07-16 15:01 1198次阅读

    AI神经网络降噪算法在语音通话产品中的应用优势与前景分析

    的语音保真度以及更低的延迟,能够有效应对复杂噪声场景。本文将探讨AI神经网络降噪在语音通话产品中的核心优势,并分析其未来发展趋势和市场前景
    的头像 发表于 05-16 17:07 1128次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>神经网络</b>降噪算法在语音通话产品中的应用优势与前景分析

    工业电机行业现状及未来发展趋势分析

    过大数据分析的部分观点,可能对您的企业规划有一定的参考价值。点击附件查看全文*附件:工业电机行业现状及未来发展趋势分析.doc 本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,删除内
    发表于 03-31 14:35

    数据采集在AI行业的应用、优势及未来发展趋势

    人工智能(AI)作为21世纪最具革命性的技术之一,正在深刻改变各行各业。AI核心动力是数据,而数据采集则是AI
    的头像 发表于 03-07 14:12 1137次阅读
    数据采集在<b class='flag-5'>AI</b>行业的应用、优势及未来<b class='flag-5'>发展趋势</b>

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1324次阅读

    如何优化BP神经网络学习

    优化BP神经网络学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性
    的头像 发表于 02-12 15:51 1433次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1597次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络学习算法。该算法通过计算每层
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、
    的头像 发表于 02-12 15:15 1358次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经
    的头像 发表于 01-23 13:52 848次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2263次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    新型储能产业发展现状及趋势-2024年上半年数据发布简版

    新型储能产业发展现状及趋势-2024年上半年数据发布 简版
    发表于 01-03 15:14 0次下载