0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

美光和思科在SEMICON West 2017:实现机器学习的前提是让机器使用大量数据创建算法

Micron美光科技 来源:未知 作者:电子大兵 2017-09-23 09:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

众所周知,机器学习是影响技术领域的最大趋势之一,它为全球企业带来了新的见解和利润。实现机器学习的前提是让机器使用大量数据创建算法,以便发现各种模式并准确预测未来的结果。这种类型的系统可以创建一个精简的流程,使得每个可能的操作无需进行编程或重新编程。

如今,制造业充分利用这些机器学习的优势,开创出智能制造的新时代。半导体制造涉及数百个精确步骤和精密工艺,是利用机器学习的理想领域。凭借在工厂中利用“互联”机器收集到的实时数据,制造商能够做出实时决策和预测,大幅提高效率和生产力。

近日,一个由行业和政府领导领导组成的小组于美国旧金山举办了 SEMICON West 2017 展会,就半导体生态系统引领的智能制造技术展开深入探讨。

Frost & Sullivan副总裁兼合伙人 Roberta Gamble,美光科技全球制造高级副总裁 Wayne Allan,美光科技企业数据科学部 Tim Long,LAM Research 首席运营官 Tim Archer,思科系统公司战略创新副总裁 Maciej Kranz,北美经济发展委员会新加坡地区会长 Gian Yi-Hsen作为与会人员,就智能制造技术,工作及会以及技术前景等话题展开深度探讨。

一起看看各位行业大咖都带来了哪些深度见解。

讨论要点

智能制造之所以“智能”,主要归功于一个非常简单的因素,那就是成果。美光科技的制造数据科学团队(于 2015 年正式成立,旨在利用数据和分析帮助实现营收增长)迄今为止共报告了 2800 多项在数据科学领域取得的成功。由 IT 企业分析和数据团队提供的创新大数据基础设施实现了跨职能合作关系,从而为营收带来了超过12亿美元的惊人增长。

圆桌会议还重点讨论了数据科学领域的其他成果。例如,美光科技将与质量相关的偏差减少了 35%,并将实现目标的速度加快了25%;思科在位于马来西亚的工厂安装了 1500 个传感器后,所生成的数据和分析结果帮助工厂将能耗降低了 30%。“这一成果靠的完全是数据,”思科的 Kranz 说道。

智能制造和机器学习策略使工程师们能够及早发现错误,从而降低了修复成本。此外,员工可以更高效地安排和管理原材料库存;对最终客户而言,产品发布日期的透明度也会提高。随着时间的推移,将会获得更多见解,实现更高的效率并节省更多成本。“就实现这些优势而言,我们才刚刚开始”,美光科技的 Allan 说道。

合作的力量

智能制造的一个基本要素是合作,即在制造商和供应商之间、公司内的各个部门之间以及公司和标准机构之间开展合作。“没有哪个组织拥有自己所需的全部数据,”Lam Research 首席运营官 Tim Archer 说道。“需要建立合作关系”来帮助生成数据,然后充分利用这些数据。

Lam Research 目前在一台制造工具上配有近 1000 个传感器,一流的晶圆厂可能拥有数百台这种工具。这就是美光科技到目前为止已从其 13 个晶圆厂收集了超过14PB 制造数据的原因之一。

点击下方视频了解美光科技高级副总裁 Wayne Allan 介绍如何使用大数据分析来改进良率并打造更高效的工厂网络。


如今,企业可以利用数据分析快速高效地完成设备投入生产的准备工作。在某些情况下,Lam Research 已将完成工具正常运行准备工作所需的时间从 21 天缩短到一周以内,大大减少了工厂在做好生产准备方面所需的时间。

在供应商、制造商和其他各方之间共享数据和见解十分重要,但需要建立信任并实施 IP 保护。到目前为止,这些合作似乎很有效,但安全和信任仍是关键问题。“如果数据共享中断,可能会成为一种扼制因素,”Lam Research 的 Archer 说道。

工作机会

新技术的出现会让某些工作不可避免地会发生变化甚至消失,机器学习亦是如此。“这是转型过程中始终存在的一个问题,”新加坡经济发展委员会的 Yi-Hsen 说道。“管理这类变化的关键在于持续进行员工教育和培训。”

新加坡数十年来一直致力于将劳动力保持在最先进的水平。这在一定程度上是通过与制造商合作开发大学课程和持续培训实现的。近来,他们还将分析、数据科学和其他技术驱动型学科加入培训课程中。一直以来,新加坡的最终目标都是跻身技术最先进的制造业强国之列,从而提升自己的竞争优势。

同样,思科也与各大学及其他机构合作打造课程和实习机会,帮助学生为迎接新兴的制造工作做好准备。“这是一种双赢,因为我们可以获得具备更多相关技能、更加出色的应聘者和学校毕业生,”思科的 Kranz 说道。“这是正确的做法,也符合我们的最大利益。”

即使没有经过明确的再培训,也会获得新的机会。通过自动执行重复性或日常性的任务(如晶圆厂中的工具维护),人们可以腾出时间专注于更具挑战性和趣味性的问题,诸如算法尚无法解决的问题。“我们发现,有些极其出色的数据科学家曾担任过工程师,”美光科技的 Long 说道。

制造工程师还可以在推动新技术方面发挥重要作用。“有些工程师拥有数十年的经验,在设计新技术的过程中,我们请他们一起参与,”思科的 Kranz 说道。“他们在解决方案的开发中起着重要的作用。”

未来前景

在竞争日益激烈的市场中,利用数据分析来改进制造至关重要。在半导体制造领域更是如此,各种压力与年俱增,包括降低成本、提高效率以及专注于关键型产品的质量。

虽然本次讨论的重点是智能制造,但小组还谈到了物联网、机器学习和数据分析对其他业务领域的巨大影响。思科的 Kranz介绍了大约 10 年前兴起的物联网带来的影响,“当时,业务线开始成为互联环境和物联网的主要获益者,”Kranz 说道。“如今,所有公司都在向科技公司演变。”

了解更多SEMICON West 2017 圆桌会议精彩洞见,请点击下方视频观看。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 美光科技
    +关注

    关注

    0

    文章

    221

    浏览量

    24216
  • 思科
    +关注

    关注

    0

    文章

    301

    浏览量

    33019
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
  • 智能制造
    +关注

    关注

    48

    文章

    6138

    浏览量

    79468

原文标题:大势所趋,大数据驱动智能制造发展

文章出处:【微信号:gh_195c6bf0b140,微信公众号:Micron美光科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    思科技:今年承接智元机器人全系列多款人形机器人业务

    电子发烧友网综合报道 8月4日,蓝思科接受调研时披露公司人形机器人领域的最新进展。蓝思科技表示,2024年起已为合作伙伴交付数百台整机
    的头像 发表于 08-05 15:46 3658次阅读

    FPGA机器学习中的具体应用

    ,越来越多地被应用于机器学习任务中。本文将探讨 FPGA 机器学习中的应用,特别是加速神经网
    的头像 发表于 07-16 15:34 2634次阅读

    【嘉楠堪智K230开发板试用体验】K230机器视觉相关功能体验

    画图 机器学习模型通过摄像头获取图像后,经过处理输入后,输出环节通常还需要进行后处理,例如图像检测应用中,目标位置的框选等。 K23
    发表于 07-08 17:25

    明远智睿SSD2351开发板:语音机器人领域的变革力量

    的四核1.4GHz处理器具备强劲的运算性能,能够高效处理语音机器人运行过程中的复杂任务。语音识别和合成需要大量的计算资源,该处理器可以快速对语音信号进行分析、处理和转换。实时语音交互场景中,无论是
    发表于 05-28 11:36

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    : 一、机器人视觉:从理论到实践 第7章详细介绍了ROS2机器视觉领域的应用,涵盖了相机标定、OpenCV集成、视觉巡线、二维码识别以及深度学习目标检测等内容。通过
    发表于 05-03 19:41

    【「# ROS 2智能机器人开发实践」阅读体验】机器人入门的引路书

    ROS的全称:Robot Operating System 机器人操作系统 ROS的 目的 :ROS支持通用库,是通信总线,协调多个传感器 为了解决机器人里各厂商模块不通用的问题,机器
    发表于 04-30 01:05

    【「# ROS 2智能机器人开发实践」阅读体验】+内容初识

    机器人技术的飞速发展,ROS 2 作为其核心工具之一,为开发者提供了强大的支持。与传统的理论书籍不同,本书深入浅出地讲解了 ROS 2 的架构、开发流程以及智能机器人项目中的应用,以代码作为切入口,
    发表于 04-27 11:24

    **【技术干货】Nordic nRF54系列芯片:传感器数据采集与AI机器学习的完美结合**

    和更多外设接口。无论是运行还是休眠状态,功耗表现都非常出色! 3. 传感器数据采集与AI机器学习中的优势? 答:主频高、功耗低,内置专用核处理数据
    发表于 04-01 00:00

    请问STM32部署机器学习算法硬件至少要使用哪个系列的芯片?

    STM32部署机器学习算法硬件至少要使用哪个系列的芯片?
    发表于 03-13 07:34

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器
    的头像 发表于 02-13 09:39 624次阅读

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。本文中,我们会介绍传统机器学习的基础知识和多种算法
    的头像 发表于 12-30 09:16 1982次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    讲解如何构造具身智能基础模型的方法和步骤,包括数据采集、预处理、模型训练和评估等。 第四部分,介绍了具身智能机器人的计算挑战,包括计算加速、算法安全性和系统可靠性等内容。 最后,
    发表于 12-27 14:50

    【「具身智能机器人系统」阅读体验】+数据具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够人类社会中有效地提供商品及服务。
    发表于 12-24 00:33

    zeta机器学习中的应用 zeta的优缺点分析

    的应用(基于低功耗广域物联网技术ZETA) ZETA作为一种低功耗广域物联网(LPWAN)技术,虽然其直接应用于机器学习的场景可能并不常见,但它可以通过提供高效、稳定的物联网通信支持,间接促进机器
    的头像 发表于 12-20 09:11 1626次阅读

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    意味着“具身智能”领域,还没有哪一个玩家能像O社那样能站在AGI的制高点。 具身智能从字面上拆解为“具身+智能”,指的是一种将机器学习算法适配至物理实体,从而与物理世界交互的AI范式
    发表于 12-19 22:26