0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

来养一只羊驼宝宝吧?!快来Duo S上跑你的第一个生成式AI

算能开发者社区 2024-05-25 08:34 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

OpenAI的创始成员Andrej Karpathy近日在一个周末内训练了一个微型LLaMA 2模型,并成功将其移植到C语言中。这个项目被他命名为Baby LLaMA 2,令人惊叹的是,推理代码仅有500行。

RISC-V挑战赛中,我们期望在一个轻量级的RISC-V开发板上把这个模型运行起来,所以就有了这个赛题:Baby LLaMA 2 on Duo 速度优化

7cd0e390-1a2e-11ef-bebc-92fbcf53809c.png

先看看效果:


赛题回顾

让 Baby LLaMA 2 运行在 Milk-V Duo 这样的小板子上是很有挑战的事情。本次竞赛旨在提升 Baby LLaMA 2 在 Milk-V Duo 平台上的性能,目标是实现更高的每秒 Token 处理速度。参赛者需要运用轻量级技术和编译器优化策略,结合麦克风语音输入或命令行输入提示词等多种方式,开发一个能够讲故事的机器人 Demo。该 Demo 应通过扬声器进行输出,并可借鉴小米米兔讲故事机器人的原型设计。

赛题地址:https://rvspoc.org/s2311/

实机教程与演示:让DuoS成为孩子的“故事王”

通过外接SPI显示屏、麦克风、音频输出设备,Duo团队实现了一个简易的场景Demo。(源码附在最后)

主要分为以下四个部分:

1、通过麦克风采集语音

2、经过语音转文字ASR模型实现语音实时转换

3、大模型实现“讲故事”实时交互

4、通过文字转语音TTS模型实现语音实时从扬声器播放“故事”

硬件连接方法:

需要设置和使用到的硬件主要有:duo s、SPI显示屏、麦克风、音频输出、按键、Wifi、UART串口、type-c(type-c这里只做供电使用,连接板子均通过串口实现)

7cf06e90-1a2e-11ef-bebc-92fbcf53809c.png

1、SPI显示屏连接

将SPI显示屏背面的引脚对应的接口和duo s板卡的引脚对应

duo s整体引脚图如下:

7d17f780-1a2e-11ef-bebc-92fbcf53809c.png

7d29e94a-1a2e-11ef-bebc-92fbcf53809c.png

SPI屏幕对应的引脚7d2e98f0-1a2e-11ef-bebc-92fbcf53809c.png

整体引脚对应连接图如下:

7d2e98f0-1a2e-11ef-bebc-92fbcf53809c.png

# 清屏cat /dev/zero > /dev/fb0# 花屏cat /dev/random > /dev/fb0

2、麦克风连接

使用USB声卡,注意麦克风和音频输出对应孔的正确连接

# 录音命令(Ctrl+C结束录音):arecord -f dat -c 1 -r 16000 XXXX.wav

3、音频输出连接

使用USB声卡,注意麦克风和扬声器输入孔的正确对应

# 播放录音:aplay XXXX.wav

4、按键连接

按键连接引脚如下:(只需要将引脚和duo s对应功能的引脚连接即可)7d7c129c-1a2e-11ef-bebc-92fbcf53809c.png

5、Wifi连接

这里通过一个一键运行脚本进行设置Wifi

vi wifi-duo-s.sh
# 执行i进入编辑模式,将以下内容写入########################################!/bin/bash# 提示用户输入WiFi的SSID和密码read -p "请输入WiFi的SSID: " ssidread -p "请输入WiFi的密码: " password# 编辑 /etc/wpa_supplicant.conf 文件cat < /etc/wpa_supplicant.confctrl_interface=/var/run/wpa_supplicantap_scan=1update_config=1
network={ ssid="$ssid" psk="$password" key_mgmt=WPA-PSK}EOF# 重启网络wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.confecho "WiFi configuration completed."######################################## ESC退出编辑模式,:wq保存退出
# 执行shsh wifi-duo-s.sh

6、UART串口连接

将USB-TTL的引脚对应duo s的引脚,对应关系如下:

Milk-V duo s

<----->

USB-TTL 串口

GND(pin 6)

<----->

GND

TX(pin 8)

<----->

RX

RX(pin 10)

<----->

TX

duo s的对应引脚如下:

7d80f0aa-1a2e-11ef-bebc-92fbcf53809c.png

USB-TTL引脚如下:

7e71b260-1a2e-11ef-bebc-92fbcf53809c.jpg

注:关于麦克风和音频输出的其他相关设置命令(可选)

# 查看录音设备arecord -l# 查看播放设备aplay -l# 查看具体设备号的信息(假设设备号为3)amixer contents -c 3
# 麦克风音量设置(name根据具体而定,常规是这个)amixer -Dhw:0 cset name='ADC Capture Volume' 24# 扬声器播放音量设置(假设音量设置为24)# 两种方式:(假设设备号为3)amixer -Dhw:3 cset name='Speaker Playback Volume' 24amixer cset -c 3 numid=6 24

软件使用方法

1、连接WiFi

sh wifi.sh# 输入连接wifi的ssid和pwd

2、安装运行依赖包

pip install requests -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

3、运行故事机baby llama

python asr_chat-llama-baby.py# 在输出Wait for key press后,通过按键输入语音(按住即开始语音输入,松开即结束语音输入)

7e980528-1a2e-11ef-bebc-92fbcf53809c.png

注:baby llama源码如下

# -*- coding: UTF-8 -*-import http.clientimport urllib.parseimport jsonimport subprocessimport timeimport httpximport requests
subprocess.Popen(['chmod', '+x', 'stable_demo'])subprocess.Popen(['./stable_demo'])print('Asr chat tts begin....')appKey = 'P918jP30TLJNHi3Q'#'P918jP30TLJNHi3Q'#s9NZm8ozBKyX63vK' #'RxkHgzYYYYLIP4OD'token = '31b129713beb46b8b0db321a005ecb0d'
# Chat ConfigurationAPI_KEY = "ebb785194c713e7b419ca8742277d414.hCBC11QCZvC5N0YK"BASE_URL = "https://open.bigmodel.cn/api/paas/v4/chat/completions"history = [{"role": "system", "content": "您好!"}]# Aliyun# url = 'https://nls-gateway-cn-shanghai.aliyuncs.com/stream/v1/asr'host = 'nls-gateway-cn-shanghai.aliyuncs.com'
def record_on_gpio(pin): is_pressed = False audioFilepath = './output.wav' while True: try: with open('/sys/class/gpio/gpio{}/value'.format(pin), 'r') as gpio_file: value = gpio_file.read().strip() #print('get key value {}',value) if value == '1' and not is_pressed: # 按键按下时开始录音 recording_process = subprocess.Popen(['arecord', '-f', 'dat', '-c', '1', '-r', '16000', 'output.wav']) is_pressed = True print("Recording started.")
if value == '0' and is_pressed: subprocess.Popen(['killall', 'arecord']) recording_process.wait() # 等待录音进程结束 is_pressed = False print("Recording stopped.") return audioFilepath except Exception as e: print("Error:", e)
def process_chunk(chunk,response_accumulator): if chunk.strip() == "[DONE]": return True, None try: data = json.loads(chunk) # print('process_chunk data:', data) if 'choices' in data and data['choices']: for choice in data['choices']: if 'delta' in choice and 'content' in choice['delta'] and choice['delta']['content']: result = choice['delta']['content'] # print('process_chunk result:', result) response_accumulator.append(result) return False, result except Exception as e: print(f"处理数据块时出错: {e}") return False, None


def chat(query, history): history += [{"role": "user", "content": query}] data = { "model": "glm-4", "messages": history, "temperature": 0.3, "stream": True, }
headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" }
response_accumulator = [] response = requests.post(BASE_URL, data=json.dumps(data), headers=headers, stream=True) send_to_lvgl(f"[CLEAR]{query}: ") try: for chunk in response.iter_lines(): if chunk: chunk_str = chunk.decode("utf-8") if chunk_str.startswith("data: "): chunk_str = chunk_str[len("data: "):]
done, result = process_chunk(chunk_str,response_accumulator) # print('result is', result)
chunk_str = "data: " + chunk_str # print("Get response:", chunk_str) if result: send_to_lvgl(result)
if done: tts_text = ''.join(response_accumulator) tts_to_play(tts_text)

except Exception as e: print(f"Error: {str(e)}")

def send_to_lvgl(text): pipe_name = '/tmp/query_pipe' try: with open(pipe_name, 'w') as pipe: pipe.write(text) pipe.flush() except Exception as e: print(f"LVGL send error: {e}")

def process(request, token, audioFile) : # 读取音频 print('process {} {}'.format(request, audioFile)) with open(audioFile, mode = 'rb') as f: audioContent = f.read()
host = 'nls-gateway-cn-shanghai.aliyuncs.com'
# 设置HTTPS请求头部 httpHeaders = { 'X-NLS-Token': token, 'Content-type': 'application/octet-stream', 'Content-Length': len(audioContent) }
conn = http.client.HTTPSConnection(host)
conn.request(method='POST', url=request, body=audioContent, headers=httpHeaders)
response = conn.getresponse() print('Response status and response reason:') print(response.status ,response.reason)
try: body = json.loads(response.read()) text = body['result'] print('Recognized Text:', text) story = makeLLAMAStory(text) print('[makeLLAMAStory] return {}'.format(story)) #send_to_lvgl(story) tts_to_play(story) #chat_response = chat(text, history) #print('Chat Response:', chat_response) except ValueError: print('The response is not json format string')
conn.close()
def makeLLAMAStory(text): print('[makeLLAMAStory] {}'.format(text)) recording_process = subprocess.Popen(['./runq-fast-gcc', 'stories15M_q80.bin', '-t', '0.8', '-n', '256', '-i', text], stdout=subprocess.PIPE, stderr=subprocess.PIPE) return_value, stderr = recording_process.communicate() return return_value.decode('utf-8')
def oneloop(): print('Wait for key press') audioFilepath = record_on_gpio(499)
#print('Wait for first audio') format = 'pcm' sampleRate = 16000 enablePunctuationPrediction = True enableInverseTextNormalization = True enableVoiceDetection = False
# 设置RESTful请求参数 asrurl = f'https://{host}/stream/v1/asr' request = asrurl + '?appkey=' + appKey request = request + '&format=' + format request = request + '&sample_rate=' + str(sampleRate)
if enablePunctuationPrediction : request = request + '&enable_punctuation_prediction=' + 'true'
if enableInverseTextNormalization : request = request + '&enable_inverse_text_normalization=' + 'true'
if enableVoiceDetection : request = request + '&enable_voice_detection=' + 'true'
print('Request: ' + request)
process(request, token, audioFilepath)
def tts_to_play(text, file_path='response.wav'): ttsurl = f'https://{host}/stream/v1/tts' text_encoded = urllib.parse.quote_plus(text) tts_request = f"{ttsurl}?appkey={appKey}&token={token}&text={text_encoded}&format=wav&sample_rate=16000"
conn = http.client.HTTPSConnection(host) conn.request('GET', tts_request) response = conn.getresponse() body = response.read() if response.status == 200 and response.getheader('Content-Type') == 'audio/mpeg': with open(file_path, 'wb') as f: f.write(body) print('TTS audio saved successfully') subprocess.Popen(['aplay', file_path]) else: print('TTS request failed:', body) conn.close()

while True: try: oneloop() except Exception as e: print(e)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • C语言
    +关注

    关注

    183

    文章

    7642

    浏览量

    144605
  • AI
    AI
    +关注

    关注

    89

    文章

    38091

    浏览量

    296567
  • 模型
    +关注

    关注

    1

    文章

    3648

    浏览量

    51711
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Linux 下交叉编译实战:跑起来第一个 STM32 程序

    跑起来第一个STM32程序。、准备工作在开始之前,需要准备:1、Linux开发环境Ubuntu、Debian或其他主流发行版都可以。2、ARMGCC交叉编译工具
    的头像 发表于 11-24 19:04 240次阅读
    Linux 下交叉编译实战:跑起来<b class='flag-5'>你</b>的<b class='flag-5'>第一个</b> STM32 程序

    智能体化AI生成AI的区别

    步骤,甚至在没有明确指令时主动行动。举个例子:生成 AI 可能会帮你生成“本周出差清单”,
    的头像 发表于 08-25 17:24 1210次阅读

    【Milk-V Duo S 开发板免费体验】Milk-V DuoS性能测试

    ;编译 有鉴于Milk-V Duo S 开发板固件没带GCC,所以懒得去部署了,还是在WSL上交叉编译。 ()源码下载 直接从github
    发表于 08-09 23:32

    【Milk-V Duo S 开发板免费体验】测试舵机

    、MG90S舵机 MG90S360度舵机,本质都是通过输出PWM波来控制的,舵机的工作
    发表于 08-09 22:46

    【Milk-V Duo S 开发板免费体验】镜像烧录与开箱

    前言 关注Milk很久了,主要做RISC-V相关板子的,之前Duo比较火,准备入手Duo,后面因为各种原因未达成,这次有幸得到块DuoS。 给我的第一感觉就是小巧精致,麻雀虽小五脏俱
    发表于 06-30 19:19

    关于鸿蒙App架中“AI文本生成模块的资质证明文件”的情况说明

    检查结果为“通过”或审核状态为“审核通过”。 那么对于这个问题,我也是尝试去解决……这里分享下我了解到的情况和方法 首先,这个政策虽然说是针对AI文本生成模块,但实际,针对的是所有
    发表于 06-30 18:37

    【Milk-V Duo S 开发板免费体验】Milk-V Duo S 开发板试用报告(3)网络

    root@192.168.42.1 登陆到 Duo 的终端。 我们直接打开终端输入:ssh root@192.168.42.1即可连接上Duo S,前提是要把它接上电脑。 进入s
    发表于 06-30 13:21

    【Milk-V Duo S 开发板免费体验】Milk-V Duo S 开发板试用报告(1)开箱

    、初识 盼啊盼,终于盼来了这块Milk-V Duo S。先看Duo S的包装。(图1)
    发表于 06-29 19:43

    谷歌新生成AI媒体模型登陆Vertex AI平台

    我们在 Vertex AI 推出新生成 AI 媒体模型: Imagen 4、Veo 3
    的头像 发表于 06-18 09:56 880次阅读

    如何制作和控制一只仿生手

    这个项目介绍了如何制作和控制一只仿生手。作者最初受到Instagram上一个视频的启发,该视频展示了使用MPU6050传感器追踪手部动作并在屏幕显示3D模型。作者决定将这个想法进
    的头像 发表于 04-15 11:52 978次阅读
    如何制作和控制<b class='flag-5'>一只</b>仿生手

    生成AI工具好用吗

    当下,生成AI工具正以其强大的内容生成能力,为用户带来了前所未有的便捷与创新。那么,生成
    的头像 发表于 01-17 09:54 816次阅读

    国内生成AI备案数量突破300款

    服务数量高达238款,占据了总备案数量的绝大部分,充分展示了该领域技术创新和市场需求的强劲动力。这快速增长不仅反映了国内企业在生成AI技术
    的头像 发表于 01-09 11:14 1141次阅读

    Google两款先进生成AI模型登陆Vertex AI平台

    新的 AI 模型,包括最先进的视频生成模型Veo以及最高品质的图像生成模型Imagen 3。近日,我们在 Google Cloud 上进步推动这
    的头像 发表于 12-30 09:56 978次阅读

    ADS1299在DAISY-CHAIN模式下只能配置第一个AD吗,那后面几个都是要怎么配置寄存器,都和第一个样吗?

    大家: 1ADS1299在DAISY-CHAIN 模式下只能配置第一个AD么,那后面几个都是要怎么配置寄存器,都和第一个样么? 2 手册写了有关时钟配置的问题,ADS1299在
    发表于 12-20 06:47

    DAC8734能把第一个接收到的数字数据输出,有哪些原因导致的呢?

    一个发送的数据时序没问题。但DAC8734能把第一个接收到的数字数据输出,我用的是TI公司自己的DAC8734EVM。可能有哪些原因导致的呢?是电顺序的原因吗?
    发表于 12-19 09:17