0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用微流控探针诱导的化学质膜穿孔,实现单细胞胞内蛋白质递送

微流控 来源:微流控 2024-05-28 10:11 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

将小分子、核酸、蛋白质和药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。然而,质膜是阻止外源分子进入细胞的生物屏障。因此,如何在保持细胞活力的同时高效地将外源分子递送到细胞中是细胞生物学领域的一个重要课题。为了克服现有大规模细胞内递送方法的弱点,例如细胞活性和递送效率不一致,主要基于膜破坏介导机制的微技术已成为一种有前景的解决方案。然而,利用化学质膜穿孔进行单细胞递送的方法尚未得到广泛研究。

据麦姆斯咨询报道,近期,清华大学化学系林金明教授团队在ACS Applied Materials & Interfaces期刊上在线发表了题为“Chemical Plasma Membrane Perforation Generated by a Microfluidic Probe for Single-Cell Intracellular Protein Delivery”的论文。该研究使用微流控探针将含有毛地黄皂苷和目标递送物的溶液精确地作用到单细胞上。毛地黄皂苷与质膜中的胆固醇结合诱导质膜穿孔,目标递送物通过孔进入细胞。碘化丙啶(0.67 kDa)和FITC-葡聚糖(10、40和150 kDa)可以在3分钟内成功引入单细胞,同时保持细胞活力。两种蛋白质(细胞色素C和亲环素A)被递送进入细胞,并观察到它们在细胞中的生理功能。

6677866e-1c8e-11ef-b74b-92fbcf53809c.jpg

图1 微流控探针诱导单细胞化学质膜穿孔

随后,研究人员利用Comsol Multiphysics软件对微流控探针形成的微区域进行数值模拟。使用荧光素(扩散系数=500 μm²/s)来指示溶质扩散。结果表明,注入的溶液可以被完全吸出,并且溶质被限制在液滴状微区域内而不会扩散,且微区域内溶质浓度分布均匀。研究人员计算了基质上的剪切应力,结果表明,基质上的低剪切应力不会对细胞造成额外的机械损伤。实验在与模拟相同的条件下进行,使用荧光素显示微流控探针产生的微区域,其浓度分布与模拟结果一致。溶液的连续流动使微区域中毛地黄皂苷和目标递送物的浓度几乎恒定,有利于维持递送过程的连续性和稳定性。

669881b6-1c8e-11ef-b74b-92fbcf53809c.jpg

图2 流体的数值模拟

接着,研究人员通过微流控探针进行碘化丙啶(PI)的细胞内递送来验证该方法的可行性以及优化递送条件。研究人员尝试使用20 - 100 μg/mL毛地黄皂苷将PI递送至U87细胞。随着毛地黄皂苷浓度的增加,ts(PI开始进入时间)和tm(PI进入速度最大时间)逐渐减少,表明细胞穿孔加速。当毛地黄皂苷浓度为60 μg/mL时,ts约为20 s,1 min内即可观察到清晰的荧光。此外,还尝试了不同的PI浓度进行细胞内递送,较高的PI浓度也使得PI能够更快地进入细胞。还测试了流速对递送结果的影响。注入流量保持2 μL/min,抽出流量在6~14 μL/min之间调整。当抽吸流速大于8 μL/min时,进入细胞的PI量随着流速的增长而显著增加。

66c6b64e-1c8e-11ef-b74b-92fbcf53809c.jpg

图3 毛地黄皂苷浓度、PI浓度和流速对细胞内递送的影响

为了证明该方法的效率和通用性,使用该方法将PI递送至U87、HUVEC和A549细胞。当递送时间为20秒时,三种类型的细胞几乎不发出荧光。随着递送时间逐渐增加,细胞的相对荧光强度显著增加,递送处理50 s后观察到强烈的红色荧光。由于洋地黄皂苷的作用,质膜逐渐透化,PI通过质膜上形成的孔继续进入细胞。接着,研究人员继续研究了该方法递送大分子的能力。使用不同分子量(10、40和150 kDa)的 FITC-葡聚糖作为目标递送物,结果显示,FITC-葡聚糖可以在3 min内进入细胞,并且FITC-葡聚糖进入的量随着递送时间的增加而增加。

66f35dde-1c8e-11ef-b74b-92fbcf53809c.jpg

图4 PI和FITC-葡聚糖递送的结果

在验证了这种方法用于单细胞胞内递送的可行性后,研究人员尝试了细胞内蛋白质递送。细胞色素C(Cyt C)(Mw = 13 kDa)是线粒体中的一种蛋白质,可将电子转移到呼吸链以维持ATP的产生。当Cyt C释放到细胞质中时,它会引发细胞凋亡。由于外源Cyt C在正常情况下不能进入细胞,利用微流控探针将Cyt C递送至A549中作为抗肿瘤药物以诱导细胞凋亡。对照组和仅用毛地黄皂苷或Cyt C处理的细胞之间未观察到caspase-3水平和Hoechst 33342染色结果的显著差异。毛地黄皂苷诱导的质膜穿孔不会引起细胞凋亡。仅用Cyt C处理的细胞中caspase-3的水平也没有增加,表明正常情况下Cyt C不能穿过质膜进入细胞激活凋亡途径。然而,在进行毛地黄皂苷介导的Cyt C递送的细胞中,caspase-3水平显著增加,蓝色荧光显著增强。细胞形态发生明显变化,细胞体积缩小,并形成凋亡小体。这些结果表明,递送的Cyt C成功诱导细胞凋亡,并且外源蛋白可以通过微流控探针有效地引入细胞内并发挥作用。

671602e4-1c8e-11ef-b74b-92fbcf53809c.jpg

图5 Cyt C被递送至A549以诱导细胞凋亡

为了进一步探索这种方法在细胞研究中的潜力,研究人员利用它来研究肿瘤耐药性。CypA(Mw = 18 kDa)是一种广泛存在的细胞内蛋白质,可充当抗氧化剂。最近有报道称CypA通过重塑细胞氧化状态可以介导结直肠癌耐药。BCNU是一种常用的抗肿瘤药物,其诱导细胞毒性的机制之一是谷胱甘肽还原酶的抑制导致ROS的积累。利用微流控探针将CypA递送到U87中,研究CypA对胶质瘤耐药性的影响。与对照组相比,未经CypA递送的细胞经BCNU处理1小时后ROS水平显著升高,并且细胞形态发生改变。对于递送CypA的细胞,ROS含量显著低于未递送细胞,并且细胞保持正常形态。结果表明,递送的CypA在细胞中具有抗氧化作用,这可能增强U87对BCNU的耐药性。抑制CypA表达可能是治疗神经胶质瘤的潜在方法。

6745f4d6-1c8e-11ef-b74b-92fbcf53809c.jpg

图6 CypA对胶质瘤耐药性的影响

综上所述,研究人员开发了一种基于开放式微流控探针的方法,以方便高效地实现单细胞递送。该方法通过使用化学试剂对单个细胞进行质膜穿孔,将最大分子量为150 kDa的外源目标递送物递送到细胞中。与载体介导或场辅助递送方法相比,该方法不需要对目标递送物进行额外处理,无需物理场辅助的温和递送条件也避免了对目标递送物和细胞的额外损伤。此外,研究人员展示了使用微流控探针进行Cyt C和CypA的细胞内递送,证明了该方法能够研究外源蛋白质对细胞生命活动的影响。未来,各种目标递送物(肽、蛋白质、mRNA、DNA、质粒、细胞器等)可以通过这种方法导入细胞内,调节细胞的生理功能和命运。而且该方法不需要昂贵的设备,操作简单,有望成为单细胞递送的一种理想方法。 清华大学化学系林金明教授为该论文的通讯作者,清华大学化学系2022级博士生宋扬为本论文的第一作者。该研究受到国家重点研发计划(No.2022YFC3400700)和国家自然科学基金(No.22034005)的支持。

论文链接:

https://pubs.acs.org/doi/10.1021/acsami.4c03013



审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 探针
    +关注

    关注

    4

    文章

    225

    浏览量

    21447
  • 微流控
    +关注

    关注

    16

    文章

    587

    浏览量

    20543

原文标题:利用微流控探针诱导的化学质膜穿孔,实现单细胞胞内蛋白质递送

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于宽带功率放大器的声细胞高效分选创新方案

    实验名称: 声细胞分选 研究方向: 基于声控的活死细胞分选技术是一种利用声波在流体通道中
    的头像 发表于 09-28 11:29 389次阅读
    基于宽带功率放大器的声<b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>高效分选创新方案

    【「AI芯片:科技探索与AGI愿景」阅读体验】+化学或生物方法实现AI

    的忆阻器、MAC计算单元及存储器 可以利用液体的流体力学特征做一个纳米级流体系统,用水柱来实现逻辑门。 ①用有机聚合物溶液实现互连、忆阻器和神经网络 有机聚合物计算通常被归类为
    发表于 09-15 17:29

    中科曙光超智融合技术重塑生物医药研发新范式

    当前,海量生物数据的处理与分析能力已成为制约行业发展的关键瓶颈。近日,依托曙光超智融合技术建设的华东某全国产计算中心,与单细胞测序领域代表性企业墨卓生物达成战略合作。以强大算力为单细胞测序、蛋白质结构预测及海量临床样本分析提供支
    的头像 发表于 08-11 11:12 961次阅读

    火极一时的AI蛋白质解析,怎么样了?

    AI蛋白质解析领域正在经历一场静水流深的变革
    的头像 发表于 07-27 17:18 2164次阅读
    火极一时的AI<b class='flag-5'>蛋白质</b>解析,怎么样了?

    基于细胞控的阻抗测试解决方案

    基于细胞控的阻抗测试技术,作为一种新兴的技术,结合了控芯片技术与电阻抗谱(EIS)技术,广泛应用于生物医学、
    的头像 发表于 07-02 11:07 1045次阅读
    基于<b class='flag-5'>细胞</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控的阻抗测试解决方案

    基于控芯片的化学反应器性能优化方法

    了解什么是控芯片以及其在化学反应器中的应用。控芯片是一种利用
    的头像 发表于 06-17 16:24 449次阅读

    安泰功率放大器在控纳米药物递送系统中的应用分享

    评为“影响人类未来15件最重要发明之一”。 那么今天Aigtek安泰电子小编就给大家分享一下功率放大器在控纳米药物递送系统中的应用,一起来学习吧~ 什么是
    的头像 发表于 04-07 11:46 514次阅读
    安泰功率放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控纳米药物<b class='flag-5'>递送</b>系统中的应用分享

    功率放大器在液滴细胞分选中的应用

    领域中的应用,提出了一种利用通道和控芯片实现单细胞分选的新方法,并详细介绍了基于
    的头像 发表于 04-03 10:08 590次阅读
    功率放大器在液滴<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>分选中的应用

    太赫兹细胞能量仪主控芯片方案单片机开发控制板布局规划

    毫米以上,可引起人体内蛋白质细胞及水分子共振,深度是一般远红外线治疗仪的50—100倍。当人体受到太赫兹照射时,由于其频率与人体中的细胞分子、原子团状的水分子的运动频率相一致,引起共振效应,其能量
    发表于 03-25 15:37

    华为依托昇腾AI打造蛋白结构预测工具

    蛋白质结构预测一直是“21世纪的生物物理学”最重要的课题之一,北京昌平实验室联合伙伴基于全场景AI框架“昇思MINDSPORE”开发的蛋白质结构预测模型在CAMEO竞赛拿下第一并霸榜四周,填补了中国AI基础软硬件在蛋白质结构预测
    的头像 发表于 03-03 13:52 850次阅读

    2025-2030年控行业发展趋势预测

    蛋白质分析等。在医疗诊断、药物筛选、环境监测等领域,因其高通量、低成本和便携性而受到青睐。那么未来控行业在核心技术上会向哪些方向发展演进呢? ‌智能化与AI深度赋能‌ ► ‌设计优化‌:生成式AI(如AutoFlow 3.
    的头像 发表于 02-24 16:00 986次阅读
    2025-2030年<b class='flag-5'>微</b><b class='flag-5'>流</b>控行业发展趋势预测

    控芯片在细胞培养检测中的应用

    控芯片系统由于分析速度快、试剂消耗少、便于集成和高通量分析等优点而被广泛应用于生化分析等各领域.过去20年中,伴随材料科学的发展以及利用加工技术操纵小尺度
    的头像 发表于 02-06 16:07 799次阅读

    Aigtek高电压放大器细胞筛选测试

    、应用以及高压放大器在其中的作用。 细胞筛选的基本概念 细胞筛选是指在
    的头像 发表于 01-20 16:33 677次阅读
    Aigtek高电压放大器<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>筛选测试

    功率放大器应用分享:利用控技术促进干细胞心肌组织成熟

    有着巨大的潜力,Aigtek安泰电子今天就将为大家分享一篇控领域研究成果,一起接着往下看吧~ 人诱导多能干细胞(hiPSC)来源的心肌组织(hiPSC-CM),是一种极具潜力且可减
    的头像 发表于 12-24 13:59 811次阅读
    功率放大器应用分享:<b class='flag-5'>利用</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控技术促进干<b class='flag-5'>细胞</b>心肌组织成熟

    AI先驱荣获诺贝尔物理学奖和化学

    神经网络和蛋白质预测领域基于 GPU 所实现的重大突破荣获诺贝尔奖,预示着科学与各行各业进入了一个新时代。
    的头像 发表于 12-19 14:35 942次阅读