0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于磁珠的液滴微流控平台,用于细胞外囊泡的高效分离

MEMS 来源:MEMS 2024-03-12 10:52 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

细胞外囊泡(EVs)作为各种疾病的生物标志物正迅速受到研究人员的青睐,其可以充当来源细胞的宝贵信息载体。然而,尽管细胞外囊泡具有重要价值,但其在临床实践中的应用仍然有限。在众多限制因素中,最关键的因素之一是分离细胞外囊泡所面临的挑战。事实上,目前采用的主流细胞外囊泡分离方法存在分离纯度低、通量小以及重现性差等问题。

据麦姆斯咨询报道,为解决上述问题,近期,来自意大利帕多瓦大学(University of Padova)等机构的研究人员开发了一种液滴微流控平台,该平台能够利用磁珠的免疫捕获亲和力,实现细胞外囊泡的高效分离。该平台能够在相对较短的时间内(4.5小时)处理大量样品(2 mL),并且其自动化程度相当高。

此外,研究人员将基于液滴微流控平台的细胞外囊泡分离方法与市售方法进行了比较,结果表明,基于液滴微流控平台的细胞外囊泡分离方法所需的孵育时间更短(市售方法所需的孵育时间为其2.5倍),捕获效率更高(其捕获效率为市售方法的2.5倍)。相关研究成果以“Droplet microfluidic platform for extracellular vesicle isolation based on magnetic bead handling”为题发表在Sensors and Actuators B: Chemical期刊上。

具体而言,研究人员首先介绍了其开发的液滴微流控平台。如图1所示,为分离细胞外囊泡而开发的液滴微流控平台由三个连续的自动化模块组成:(1)液滴生成器;(2)液滴孵育器;(3)磁珠提取器。各模块由注射器或压力控制器控制。实验开始前,将含有磁珠和细胞外囊泡的样品先存放在一个摇动装置中,以防止磁珠沉降。在通过双T型接头生成液滴的过程中,启动注射器并将控制器的压差(ΔP)设为零,同时保持阀门关闭,以便使液滴从出口5流出PDMS基微流控芯片(见图1)。注入微流控芯片中的分散相和连续相的流速可以调节,以获得所需大小的液滴。经过适当优化后,最终将载体油、水性样品和矿物油的流速分别设定为30 μL/min、250 μL/min和60 μL/min,从而生成体积为980 ± 60 nL的液滴。

fe177790-dfc6-11ee-a297-92fbcf53809c.jpg

用于分离细胞外囊泡的液滴微流控平台及其工作流程示意图

当所有的起始样品都被分散生成液滴后,关闭注射器,打开阀门,并启动压力控制器,以控制液滴的运动。具体而言,通过交替施加正负压差(50 ~ 200 mbar),在毛细管内进行的时长可调的孵育过程中,液滴会来回运动,从而促进其内容物的混合,并进一步增加细胞外囊泡与磁珠相遇和结合的几率。

孵育结束后,阀门被再次关闭,利用与入口1连接的注射器将液滴引导至微流控平台的第三个模块——磁珠提取模块中,以提取磁珠。在该模块区域,将磁化金属尖端靠近毛细管,从而可以在母液滴流动时从其中提取磁珠。一旦液滴完全从磁化金属尖端前方通过,磁珠被完全捕获,磁珠团便会被包裹在一个微小的液滴中。液滴最终的体积取决于磁珠的数量,通常,当磁珠的数量在10⁴到10⁷之间时,生成的液滴的体积在5 nL到50 nL之间。

随后,将磁铁从毛细管附近移开,磁珠会从毛细管中流出。将其收集到预装入水溶液的常规PCR管中,用于随后的细胞外囊泡分析。总而言之,只需将磁化金属尖端从磁珠提取模块区域移开几毫米,使磁珠不再受到磁力作用,就能轻松完成磁珠的提取。

fe237f9a-dfc6-11ee-a297-92fbcf53809c.jpg

液滴内磁珠捕获效率的表征

在后续的研究过程中,研究人员对开发的微流控平台进行了表征,并展示了利用生物样本对微流控平台的性能进行验证的结果。此外,通过蛋白质表征、细胞外囊泡定量和成像等手段,研究人员将基于液滴微流控平台的细胞外囊泡分离方法与传统的超速离心法和商业试剂盒方案进行了系统地比较。最后,研究人员还对分离出的细胞外囊泡的microRNA含量进行了评估。

fe3044be-dfc6-11ee-a297-92fbcf53809c.jpg

液滴微流控平台对不同起始样品量(V = 50 ~ 2000 µL)的处理能力

fe4b9868-dfc6-11ee-a297-92fbcf53809c.jpg

液滴微流控平台分离细胞外囊泡的性能验证

综上所述,在这项研究中,研究人员提出并验证了一种基于液滴微流控技术和磁珠的新型平台,并将其成功用于分离细胞外囊泡。值得注意的是,与使用市售方法相比,液滴微流控技术可以在更短的孵育时间内将捕获效率提高2.5倍。此外,与单相微流控器件相比,该研究提出的微流控平台在样品量(最多2 mL起始样品)和分析通量(超过400 μL/h)方面也有显著提高。因此,可以认为,使用液滴微流控技术进行细胞外囊泡分离在基础研究和临床应用方面都具有巨大潜力。不过,对于临床样本(如血浆或血清)的处理,可能需要对表面活性剂进行专门优化,以确保液滴的稳定性,同时还需要对用于免疫捕获的磁珠涂层进行优化。

论文链接:
https://doi.org/10.1016/j.snb.2024.135583




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控芯片
    +关注

    关注

    13

    文章

    310

    浏览量

    19946
  • PCR
    PCR
    +关注

    关注

    0

    文章

    120

    浏览量

    20378
  • 生成器
    +关注

    关注

    7

    文章

    322

    浏览量

    22507
  • 压力控制器
    +关注

    关注

    0

    文章

    39

    浏览量

    6321

原文标题:基于磁珠的液滴微流控平台,用于细胞外囊泡的高效分离

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    ATA-1372A宽带放大器:超声驱动制备系统的核心引擎

    。 实验名称:ATA-1372A宽带放大器在超声驱动喷嘴制备系统中的应用 实验方向:
    的头像 发表于 10-28 16:10 287次阅读
    ATA-1372A宽带放大器:超声驱动<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>制备系统的核心引擎

    基于宽带功率放大器的声细胞高效分选创新方案

    的前提下,高效、精准地分离细胞和死细胞。 基于控的细胞
    的头像 发表于 09-28 11:29 392次阅读
    基于宽带功率放大器的声<b class='flag-5'>流</b>控<b class='flag-5'>细胞</b><b class='flag-5'>高效</b>分选创新方案

    ATA-2161高压放大器与控芯片分选:精准操控与高效应用

    实验名称: 控芯片中操控充电分选实验 研究方向: 控芯片
    的头像 发表于 09-16 11:35 353次阅读
    ATA-2161高压放大器与<b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片<b class='flag-5'>液</b><b class='flag-5'>滴</b>分选:精准操控与<b class='flag-5'>高效</b>应用

    ATA-7030高压放大器:数字控芯片及系统的高效驱动力

    实验名称: 智能化光电数字控芯片及系统研究实验 实验内容: 利用光电润湿芯片实现在开放平面上的二维驱动,探究投影光图对
    的头像 发表于 09-08 11:46 1429次阅读
    ATA-7030高压放大器:数字<b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片及系统的<b class='flag-5'>高效</b>驱动力

    双核液电场精准融合:电压放大器赋能控混合强化实验

    微机电系统领域的迅速发展,如今人们借助于微机电系统加工技术已经能够制备出各种高集成、跨尺度和高可控性的控芯片,因此它被广泛用于生物医疗、新型材料和前沿工程等多个领域。
    的头像 发表于 08-13 11:39 398次阅读
    双核液<b class='flag-5'>滴</b>电场精准融合:电压放大器赋能<b class='flag-5'>微</b><b class='flag-5'>流</b>控混合强化实验

    电压放大器驱动控芯片关键功能实现研究

    实验名称: 电压放大器在控芯片的功能研究中的应用 研究方向: 控生物芯片 测试目的:
    的头像 发表于 07-30 14:24 503次阅读
    电压放大器驱动<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片关键功能实现研究

    ATA-7000系列高压放大器:助力介电泳分选技术迈向新高度

    控技术(Microfluidics)是一种在微观尺度对流体进行控制的技术,能够把实验室完成的分析过程集成在一个微米尺度的控芯片上,可以大大提高实验研究效率。因此该技术应
    的头像 发表于 07-30 13:55 335次阅读
    ATA-7000系列高压放大器:助力介电泳<b class='flag-5'>液</b><b class='flag-5'>滴</b>分选技术迈向新高度

    基于细胞控的阻抗测试解决方案

    基于细胞控的阻抗测试技术,作为一种新兴的技术,结合了控芯片技术与电阻抗谱(EIS)技术,广泛应
    的头像 发表于 07-02 11:07 1048次阅读
    基于<b class='flag-5'>细胞</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控的阻抗测试解决方案

    功率放大器在细胞分选中的应用

    摘要:通过对的大小和形状进行控制,可以实现对单个细胞的分选。本文综述了国内外在
    的头像 发表于 04-03 10:08 596次阅读
    功率放大器在<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>分选中的应用

    ATA-1372A宽带放大器在超声驱动喷嘴制备系统中的应用

    。近期,来自上海交通大学机械与动力工程学院的研究团队,就针对上述方向进行了控相关研究,该研究成果发表在物理与天体物理领域国际期刊《PHYSICALREVI
    的头像 发表于 03-20 18:48 2185次阅读
    ATA-1372A宽带放大器在超声驱动喷嘴<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>制备系统中的应用

    Aigtek高电压放大器细胞筛选测试

    、应用以及高压放大器在其中的作用。 细胞筛选的基本概念 细胞筛选是指在
    的头像 发表于 01-20 16:33 682次阅读
    Aigtek高电压放大器<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>筛选测试

    用于的连续流动洗涤控系统

    流体基于一个由几个已建立的单元操作组成的工具箱,包括生成、培养、混合、微微注射和分选。在过去的二十年里,将这些多单元操作整合到工作
    的头像 发表于 12-26 15:04 649次阅读

    基于流动聚焦结构的形成机理

    控芯片 又称芯片实验室,指在厘米级的芯片上,由通道形成网络,使可控流体贯穿整个系统,以实现常规化学或生物学实验室的各种功能,在生物和化学等领域具有良好的应用前景。通道内的
    的头像 发表于 12-23 15:29 1053次阅读
    基于流动聚焦结构的<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>形成机理

    NOVA无误差流体

    高通量筛选技术是解开生物学奥秘的关键。然而,流体在实现单细胞分辨率、超高通量筛查方面的前景在很大程度上仍未实现。由多分散
    的头像 发表于 12-18 16:28 651次阅读

    深视智能SH6系列高速摄像机观测控实验

    01项目背景控技术是一种在尺度条件下对少量流体进行精确且系统地控制的技术,其应用领域广泛,包括医药、化工、材料科学等多个行业。在
    的头像 发表于 12-10 16:36 992次阅读
    深视智能SH6系列高速摄像机观测<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控实验